Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
The algorithm is similar to 3Sum.
public class Solution { public ArrayList<ArrayList<Integer>> fourSum(int[] num, int target) { ArrayList<ArrayList<Integer> > result = new ArrayList<ArrayList<Integer> >(); int len = num.length; if(len >=4){ // sort array first Arrays.sort(num); for(int i = 0; i < len - 3; ++i){ int j = i + 1; int sum = target - num[i]; while(j < len - 2){ int mid = j + 1; int end = len - 1; while(mid < end){ int tripleSum = num[j] + num[mid] + num[end]; if(tripleSum == sum){ ArrayList<Integer> oneSolution = new ArrayList<Integer>(); oneSolution.add(num[i]); oneSolution.add(num[j]); oneSolution.add(num[mid]); oneSolution.add(num[end]); result.add(oneSolution); } else if(tripleSum < sum){ ++mid; continue; } else{ --end; continue; } ++mid; --end; while(mid < end && num[mid - 1] == num[mid]) ++mid; while(mid < end && num[end] == num[end + 1]) --end; } ++j; while(j < len - 2 && num[j - 1] == num[j]) ++j; } while(i < len - 3 && num[i] == num[i + 1]) ++i; } } return result; } }