• CF755G PolandBall and Many Other Balls


    PolandBall and Many Other Balls

    There are exactly \(n\) Balls

    Select exactly \(m\) groups of Balls, each consisting either of single Ball or two neighboring Balls. Each Ball can join no more than one group.

    Calculate number of such divisions for all \(m\) where \(1 ≤ m ≤ k\). Output all these values modulo \(998244353\)

    \(1 ≤ n ≤ 10^9, 1 ≤ k < 2^{15}\)

    题解

    https://blog.csdn.net/make_it_for_good/article/details/69943249

    CF的Tutorial给我一种“就是为了倍增我才出的这道题”的感觉。

    计数DP。\(f(i,j)\)表示前\(i\)个球分了\(j\)组的方案数。显然有

    \[\begin{equation} f(i,j)=f(i-1,j)+f(i-1,j-1)+f(i-2,j-1) \end{equation} \]

    写出生成函数。

    \[F_i=(x+1)F_{i-1}+xF_{i-2} \]

    二阶齐次线性递推,解特征方程\(y^2-(x+1)y-x=0\)

    \[\alpha=\frac{1+x+\sqrt{1+6x+x^2}}{2},\beta=\frac{1+x-\sqrt{1+6x+x^2}}{2} \]

    用待定系数法设\(F_n=A\alpha^n+B\beta^n\)(注意\(A,B\)也是多项式),代入\(F_0=1,F_1=1+x\)

    \[A=\frac{1+x+\sqrt{1+6x+x^2}}{2\sqrt{1+6x+x^2}},B=-\frac{1+x-\sqrt{1+6x+x^2}}{2\sqrt{1+6x+x^2}} \]

    所以有

    \[F_n=\frac{\left(\frac{1+x+\sqrt{1+6x+x^2}}{2}\right)^{n+1}-\left(\frac{1+x-\sqrt{1+6x+x^2}}{2}\right)^{n+1}}{\sqrt{1+6x+x^2}} \]

    因为\(1+x-\sqrt{1+6x+x^2}\)常数项是\(0\),所以第二个幂\(\bmod x^{n+1}=0\),可以不管。

    多项式操作,时间复杂度\(O(k2^k)\)

    多项式开根完全可以用多项式ln+exp代替。因为常数项是\(1\)所以不用写二次剩余。

    #include<bits/stdc++.h>
    using namespace std;
    using int64=long long;
    using poly=vector<int>;
    
    template<class T>
    T read(){
        T x=0; char w=1, c=getchar();
        for(; !isdigit(c); c=getchar())if(c=='-') w=-w;
        for(; isdigit(c); c=getchar()) x=x*10+c-'0';
        return x*w;
    }
    template<class T>
    T& read(T& x){
        return x=read<T>();
    }
    
    constexpr int mod=998244353;
    int add(int a, int b){
        return (a+=b)>=mod ? a-mod : a;
    }
    int mul(int a, int b){
        return (int64)a*b%mod;
    }
    int fpow(int a, int b){
        int ans=1;
        for(; b; b>>=1, a=mul(a, a))
            if(b&1) ans=mul(ans, a);
        return ans;
    }
    
    constexpr int N=1<<16;
    int omg[2][N], rev[N];
    int fac[N], inv[N], ifac[N];
    
    void init_NTT(){
        omg[0][0]=1, omg[0][1]=fpow(3, (mod-1)/N);
        omg[1][0]=1, omg[1][1]=fpow(omg[0][1], mod-2);
        rev[0]=0, rev[1]=1<<15;
        fac[0]=fac[1]=1;
        inv[0]=inv[1]=1;
        ifac[0]=ifac[1]=1;
        for(int i=2; i<N; ++i){
            omg[0][i]=mul(omg[0][i-1], omg[0][1]);
            omg[1][i]=mul(omg[1][i-1], omg[1][1]);
            rev[i]=rev[i>>1]>>1|(i&1)<<15;
            fac[i]=mul(fac[i-1], i);
            inv[i]=mul(mod-mod/i, inv[mod%i]);
            ifac[i]=mul(ifac[i-1], inv[i]);
        }
    }
    void NTT(poly& a, int dir){
        int lim=a.size(), len=log2(lim);
        for(int i=0; i<lim; ++i){
            int r=rev[i]>>(16-len);
            if(i<r) swap(a[i], a[r]);
        }
        for(int i=1; i<lim; i<<=1)
            for(int j=0; j<lim; j+=i<<1)for(int k=0; k<i; ++k){
                int t=mul(omg[dir][N/(i<<1)*k], a[j+i+k]);
                a[j+i+k]=add(a[j+k], mod-t), a[j+k]=add(a[j+k],t);
            }
        if(dir){
            int ilim=fpow(lim, mod-2);
            for(int i=0; i<lim; ++i) a[i]=mul(a[i], ilim);
        }
    }
    poly operator~(poly a){
        int n=a.size();
        poly b={fpow(a[0], mod-2)};
        a.resize(1<<(int)ceil(log2(n)));
        for(int lim=2; lim<2*n; lim<<=1){
            poly c(a.begin(), a.begin()+lim);
            c.resize(lim<<1), NTT(c, 0);
            b.resize(lim<<1), NTT(b, 0);
            for(int i=0; i<lim<<1; ++i) b[i]=mul(2+mod-mul(c[i], b[i]), b[i]);
            NTT(b, 1), b.resize(lim);
        }
        return b.resize(n), b;
    }
    poly log(poly a){
        int n=a.size();
        poly b=~a;
        for(int i=0; i<n-1; ++i) a[i]=mul(a[i+1], i+1);
        a.resize(n-1);
        int lim=1<<(int)ceil(log2(2*n-2));
        a.resize(lim), NTT(a, 0);
        b.resize(lim), NTT(b, 0);
        for(int i=0; i<lim; ++i) a[i]=mul(a[i], b[i]);
        NTT(a, 1), a.resize(n);
        for(int i=n-1; i>=1; --i) a[i]=mul(a[i-1], inv[i]);
        return a[0]=0, a;
    }
    poly exp(poly a){
        int n=a.size();
        poly b={1};
        a.resize(1<<(int)ceil(log2(n)));
        for(int lim=2; lim<2*n; lim<<=1){
            b.resize(lim); poly c=log(b);
            c[0]=add(1+a[0],mod-c[0]);
            for(int i=1; i<lim; ++i) c[i]=add(a[i],mod-c[i]);
            c.resize(lim<<1), NTT(c, 0);
            b.resize(lim<<1), NTT(b, 0);
            for(int i=0; i<lim<<1; ++i) b[i]=mul(c[i], b[i]);
            NTT(b, 1), b.resize(lim);
        }
        return b.resize(n), b;
    }
    poly operator*(poly a, poly b){
        int n=a.size()+b.size()-1, lim=1<<(int)ceil(log2(n));
        a.resize(lim), NTT(a, 0);
        b.resize(lim), NTT(b, 0);
        for(int i=0; i<lim; ++i) a[i]=mul(a[i], b[i]);
        NTT(a, 1), a.resize(n);
        return a;
    }
    
    int main(){
        init_NTT();
        int n=read<int>(), m=read<int>();
        poly a={1, 6, 1};
        a.resize(m+1), a=log(a);
        for(int i=0; i<=m; ++i) a[i]=mul(a[i], inv[2]);
        a=exp(a);
        poly b={1, 1};
        b.resize(m+1);
        for(int i=0; i<=m; ++i) b[i]=mul(b[i]+a[i], inv[2]);
        b=log(b);
        for(int i=0; i<=m; ++i) b[i]=mul(b[i], n+1);
        b=exp(b)*~a, b.resize(m+1);
        for(int i=1; i<=min(m, n); ++i) printf("%d%c", b[i], " \n"[i==m]);
        for(int i=min(m, n)+1; i<=m; ++i) printf("0%c", " \n"[i==m]);
        return 0;
    }
    
    静渊以有谋,疏通而知事。
  • 相关阅读:
    图片上传前预览、压缩、转blob、转formData等操作
    Vue背景图打包之后访问路径错误
    图片上传前预览的功能
    总结div里面水平垂直居中的实现方法
    IE浏览器报Promise未定义的错误、解决vuex requires a Promise polyfill in this browser问题
    普通项目转换成maven项目
    HTTP 错误 404.0
    电商项目系列文档(四):售后的设计(退换货)
    Sqlserver数据库还原.bak文件失败的两个问题
    数据库字段顺序的【坑】
  • 原文地址:https://www.cnblogs.com/autoint/p/15630824.html
Copyright © 2020-2023  润新知