差异
题目描述
给定一个长度为 $n$ 的字符串 $S$,令 $T_i$ 表示它从第 $i$ 个字符开始的后缀。求
$displaystyle sum_{1leqslant i<jleqslant n} ext{len}(T_i)+ ext{len}(T_j)-2 imes ext{lcp}(T_i,T_j)$
其中,$ ext{len}(a)$ 表示字符串 $a$ 的长度,$ ext{lcp}(a,b)$ 表示字符串 $a$ 和字符串 $b$ 的最长公共前缀。
输入输出格式
输入格式:一行,一个字符串 $S$。
输出格式:一行,一个整数,表示所求值。
输入输出样例
说明
对于 100% 的数据,保证 $2leqslant nleqslant 500000$,且均为小写字母。
分析
参照张天扬《后缀自动及及其应用》。
把串反向,然后求的是前缀串两两的最长公共后缀。定位前缀串在后缀自动机上的位置以后,这个最长公共后缀就是他们在parent树上的lca。
那么简单计数统计即可。时间复杂度(O(n))
co int N=1e6;
int last=1,tot=1;
int ch[N][26],fa[N],len[N],s[N],w[N];
void extend(int c){
int p=last,cur=last=++tot;
len[cur]=len[p]+1,s[cur]=w[cur]=1;
for(;p&&!ch[p][c];p=fa[p]) ch[p][c]=cur;
if(!p) fa[cur]=1;
else{
int q=ch[p][c];
if(len[q]==len[p]+1) fa[cur]=q;
else{
int clone=++tot;
memcpy(ch[clone],ch[q],sizeof ch[q]);
fa[clone]=fa[q],len[clone]=len[p]+1;
fa[cur]=fa[q]=clone;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=clone;
}
}
}
char str[N];
int n,cnt[N],id[N];
int main(){
scanf("%s",str+1),n=strlen(str+1);
for(int i=n;i>=1;--i) extend(str[i]-'a');
for(int i=1;i<=tot;++i) ++cnt[len[i]];
for(int i=1;i<=n;++i) cnt[i]+=cnt[i-1];
for(int i=1;i<=tot;++i) id[cnt[len[i]]--]=i;
for(int i=tot;i;--i) s[fa[id[i]]]+=s[id[i]];
ll ans=0;
for(int i=1;i<=tot;++i){
ans+=(ll)w[fa[i]]*s[i]*len[fa[i]];
w[fa[i]]+=s[i];
}
printf("%lld
",(ll)(n-1)*(n+1)*n/2-2*ans);
return 0;
}
BZOJ3879 SvT
有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n].
现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置来表示),求这些后缀两两之间的LCP的长度之和.一对后缀之间的LCP长度仅统计一遍.
对于100%的测试数据,有S<=5*105,且Σt<=3*106.
特别注意:由于另一世界线的某些参数发生了变化,对于一组询问,即使一个后缀出现了多次,也仅算一次.
这题无非是加个虚树而已。