• UVa12304


    基础题,注意精度和旋转方向。

    #include <iostream>
    #include <math.h>
    #include <vector>
    #include <algorithm>
    #include <string>
    
    using namespace std;
    
    #define PI acos(-1.0)
    
    #define M 100007
    #define N 65736
    
    const int inf = 0x7f7f7f7f;
    const int mod = 1000000007;
    const double eps = 1e-6;
    
    
    struct Point
    {
    	double x, y;
    	Point(double tx = 0, double ty = 0) : x(tx), y(ty){}
    };
    typedef Point Vtor;
    //向量的加减乘除
    Vtor operator + (Vtor A, Vtor B) { return Vtor(A.x + B.x, A.y + B.y); }
    Vtor operator - (Point A, Point B) { return Vtor(A.x - B.x, A.y - B.y); }
    Vtor operator * (Vtor A, double p) { return Vtor(A.x*p, A.y*p); }
    Vtor operator / (Vtor A, double p) { return Vtor(A.x / p, A.y / p); }
    bool operator < (Point A, Point B) { return A.x < B.x || (A.x == B.x && A.y < B.y); }
    int dcmp(double x){ if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
    bool operator == (Point A, Point B) { return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0; }
    //向量的点积,长度,夹角
    double Dot(Vtor A, Vtor B) { return (A.x*B.x + A.y*B.y); }
    double Length(Vtor A) { return sqrt(Dot(A, A)); }
    double Angle(Vtor A, Vtor B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
    //叉积,三角形面积
    double Cross(Vtor A, Vtor B) { return A.x*B.y - A.y*B.x; }
    double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
    //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
    Vtor Rotate(Vtor A, double rad){ return Vtor(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); }
    Vtor Normal(Vtor A)
    {
    	double L = Length(A);
    	return Vtor(-A.y / L, A.x / L);
    }
    //直线的交点
    Point GetLineIntersection(Point P, Vtor v, Point Q, Vtor w)
    {
    	Vtor u = P - Q;
    	double t = Cross(w, u) / Cross(v, w);
    	return P + v*t;
    }
    //点到直线的距离
    double DistanceToLine(Point P, Point A, Point B)
    {
    	Vtor v1 = B - A;
    	return fabs(Cross(P - A, v1)) / Length(v1);
    }
    //点到线段的距离
    double DistanceToSegment(Point P, Point A, Point B)
    {
    	if (A == B) return Length(P - A);
    	Vtor v1 = B - A, v2 = P - A, v3 = P - B;
    	if (dcmp(Dot(v1, v2)) < 0) return Length(v2);
    	else if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
    	else return fabs(Cross(v1, v2)) / Length(v1);
    }
    //点到直线的映射
    Point GetLineProjection(Point P, Point A, Point B)
    {
    	Vtor v = B - A;
    	return A + v*Dot(v, P - A) / Dot(v, v);
    }
    
    //判断线段是否规范相交
    bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
    {
    	double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
    		c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
    	return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
    }
    //判断点是否在一条线段上
    bool OnSegment(Point P, Point a1, Point a2)
    {
    	return dcmp(Cross(a1 - P, a2 - P)) == 0 && dcmp(Dot(a1 - P, a2 - P)) < 0;
    }
    //多边形面积
    double PolgonArea(Point *p, int n)
    {
    	double area = 0;
    	for (int i = 1; i < n - 1; ++i)
    		area += Cross(p[i] - p[0], p[i + 1] - p[0]);
    	return area / 2;
    }
    
    struct Line
    {
    	Point p, b;
    	Vtor v;
    	Line(){}
    	Line(Point a, Point b, Vtor v) : p(a), b(b), v(v) {}
    	Line(Point p, Vtor v) : p(p), v(v){}
    	Point point(double t) { return p + v*t; }
    };
    struct Circle
    {
    	Point c;
    	double r;
    	Circle(Point tc, double tr) : c(tc), r(tr){}
    	Point point(double a)
    	{
    		return Point(c.x + cos(a)*r, c.y + sin(a)*r);
    	}
    };
    //判断圆与直线是否相交以及求出交点
    int getLineCircleIntersection(Line L, Circle C, double &t1, double &t2, vector<Point> &sol)
    {
    	//    printf(">>>>>>>>>>>>>>>>>>>>>>>>
    ");
    	//注意sol没有清空哦
    	double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
    	double e = a*a + c*c, f = 2 * (a*b + c*d), g = b*b + d*d - C.r*C.r;
    	double delta = f*f - 4.0*e*g;
    	if (dcmp(delta) < 0) return 0;
    	else if (dcmp(delta) == 0)
    	{
    		t1 = t2 = -f / (2.0*e);
    		sol.push_back(L.point(t1));
    		return 1;
    	}
    	t1 = (-f - sqrt(delta)) / (2.0 * e); sol.push_back(L.point(t1));
    	t2 = (-f + sqrt(delta)) / (2.0 * e); sol.push_back(L.point(t2));
    	return 2;
    }
    //判断并求出两圆的交点
    double angle(Vtor v) { return atan2(v.y, v.x); }
    int getCircleIntersection(Circle C1, Circle C2, vector<Point> &sol)
    {
    	double d = Length(C1.c - C2.c);
    	// 圆心重合
    	if (dcmp(d) == 0)
    	{
    		if (dcmp(C1.r - C2.r) == 0) return -1; // 两圆重合
    		return 0; // 包含
    	}
    
    	// 圆心不重合
    	if (dcmp(C1.r + C2.r - d) < 0) return 0; // 相离
    	if (dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; // 包含
    
    	double a = angle(C2.c - C1.c);
    	double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2 * C1.r*d));
    	Point p1 = C1.point(a - da), p2 = C1.point(a + da);
    	sol.push_back(p1);
    	if (p1 == p2) return 1;
    	sol.push_back(p2);
    	return 2;
    }
    //求点到圆的切线
    int getTangents(Point p, Circle C, Vtor* v)
    {
    	Vtor u = C.c - p;
    	double dis = Length(u);
    	if (dis < C.r)  return 0;
    	else if (dcmp(dis - C.r) == 0)
    	{
    		v[0] = Rotate(u, PI / 2.0);
    		return 1;
    	}
    	else
    	{
    		double ang = asin(C.r / dis);
    		v[0] = Rotate(u, -ang);
    		v[1] = Rotate(u, +ang);
    		return 2;
    	}
    }
    //求两圆的切线
    int getCircleTangents(Circle A, Circle B, Point *a, Point *b)
    {
    	int cnt = 0;
    	if (A.r < B.r) { swap(A, B); swap(a, b); }
    	//圆心距的平方
    	double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y);
    	double rdiff = A.r - B.r;
    	double rsum = A.r + B.r;
    	double base = angle(B.c - A.c);
    	//重合有无限多条
    	if (d2 == 0 && dcmp(A.r - B.r) == 0) return -1;
    	//内切
    	if (dcmp(d2 - rdiff*rdiff) == 0)
    	{
    		a[cnt] = A.point(base);
    		b[cnt] = B.point(base); cnt++;
    		return 1;
    	}
    	//有外公切线
    	double ang = acos((A.r - B.r) / sqrt(d2));
    	a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
    	a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
    
    	//一条内切线
    	if (dcmp(d2 - rsum*rsum) == 0)
    	{
    		a[cnt] = A.point(base); b[cnt] = B.point(PI + base); cnt++;
    	}//两条内切线
    	else if (dcmp(d2 - rsum*rsum) > 0)
    	{
    		double ang = acos((A.r + B.r) / sqrt(d2));
    		a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
    		a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
    	}
    	return cnt;
    }
    
    
    //**********************************
    Circle CircumscribedCircle(Point A, Point B, Point C)
    {
    	Point tmp1 = Point((B.x + C.x) / 2.0, (B.y + C.y) / 2.0);
    	Vtor u = C - tmp1;
    	u = Rotate(u, PI / 2.0);
    	Point tmp2 = Point((A.x + C.x) / 2.0, (A.y + C.y) / 2.0);
    	Vtor v = C - tmp2;
    	v = Rotate(v, -PI / 2.0);
    	Point c = GetLineIntersection(tmp1, u, tmp2, v);
    	double r = Length(C - c);
    	return Circle(c, r);
    }
    //得到法向量就得到了这个方向上的向量了
    //Circle work1(Point p1, Point p2, Point p3)
    // {
    //     Vtor nor1 = Normal(p1 - p2);
    //     Vtor nor2 = Normal(p2 - p3);
    //     Point mid1 = (p1 + p2) / 2.0;
    //     Point mid2 = (p2 + p3) / 2.0;
    //     Point O = GetLineIntersection(mid1, nor1, mid2, nor2);
    //     double r = Length(O - p1);
    //     return Circle(O, r);
    //}
    
    //不知道为什么我按常规的求法就是不对
    //Circle InscribedCircle(Point A,Point B,Point C)
    //{
    //    Vtor u = A - B;
    //    Vtor v = C - B;
    //    double ang = Angle(u,v);
    //    Vtor vv= Rotate(v,ang / 2.0);
    //    u = A - C;
    //    v = B - C;
    //    ang = Angle(u,v);
    //    Vtor uu = Rotate(u,ang / 2.0);
    //    Point c = GetLineIntersection(B,vv,C,uu);
    //    double r = DistanceToLine(c,A,C);
    //    return Circle(c,r);
    //}
    Circle work2(Point p1, Point p2, Point p3) {
    	Vtor v11 = p2 - p1;
    	Vtor v12 = p3 - p1;
    	Vtor v21 = p1 - p2;
    	Vtor v22 = p3 - p2;
    	double ang1 = (angle(v11) + angle(v12)) / 2.0;
    	double ang2 = (angle(v21) + angle(v22)) / 2.0;
    	Vtor vec1 = Vtor(cos(ang1), sin(ang1));
    	Vtor vec2 = Vtor(cos(ang2), sin(ang2));
    	Point O = GetLineIntersection(p1, vec1, p2, vec2);
    	double r = DistanceToLine(O, p1, p2);
    	return Circle(O, r);
    }
    vector<Point> solve4(Point A, Point B, double r, Point C)
    {
    	Vtor normal = Normal(B - A);
    	normal = normal / Length(normal) * r;
    	vector<Point> ans;
    	double t1 = 0, t2 = 0;
    	Vtor tA = A + normal, tB = B + normal;
    	getLineCircleIntersection(Line(tA, tB, tB - tA), Circle(C, r), t1, t2, ans);
    	tA = A - normal, tB = B - normal;
    	getLineCircleIntersection(Line(tA, tB, tB - tA), Circle(C, r), t1, t2, ans);
    	return ans;
    }
    vector<Point> solve5(Point A, Point B, Point C, Point D, double r)
    {
    	Line lines[5];
    	Vtor normal = Normal(B - A) * r;
    	Point ta, tb, tc, td;
    	ta = A + normal, tb = B + normal;
    	lines[0] = Line(ta, tb, tb - ta);
    	ta = A - normal, tb = B - normal;
    	lines[1] = Line(ta, tb, tb - ta);
    
    	normal = Normal(D - C) * r;
    	tc = C + normal, td = D + normal;
    	lines[2] = Line(tc, td, td - tc);
    	tc = C - normal, td = D - normal;
    	lines[3] = Line(tc, td, td - tc);
    	vector<Point> ans;
    	ans.push_back(GetLineIntersection(lines[0].p, lines[0].v, lines[2].p, lines[2].v));
    	ans.push_back(GetLineIntersection(lines[0].p, lines[0].v, lines[3].p, lines[3].v));
    	ans.push_back(GetLineIntersection(lines[1].p, lines[1].v, lines[2].p, lines[2].v));
    	ans.push_back(GetLineIntersection(lines[1].p, lines[1].v, lines[3].p, lines[3].v));
    	return ans;
    }
    vector<Point> solve6(Circle C1, Circle C2, double r)
    {
    	vector<Point> vc;
    	getCircleIntersection(Circle(C1.c, C1.r + r), Circle(C2.c, C2.r + r), vc);
    	return vc;
    }
    
    string op;
    double x[10];
    
    int main()
    {
    	//    Read();
    
    	while (cin >> op)
    	{
    		if (op == "CircumscribedCircle")
    		{
    			for (int i = 0; i < 6; ++i) cin >> x[i];
    			Circle ans = CircumscribedCircle(Point(x[0], x[1]), Point(x[2], x[3]), Point(x[4], x[5]));
    			//            Circle ans = work1(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
    			printf("(%.6lf,%.6lf,%.6lf)
    ", ans.c.x, ans.c.y, ans.r);
    		}
    		else if (op == "InscribedCircle")
    		{
    			for (int i = 0; i < 6; ++i) cin >> x[i];
    			//            Circle ans = InscribedCircle(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
    			Circle ans = work2(Point(x[0], x[1]), Point(x[2], x[3]), Point(x[4], x[5]));
    			printf("(%.6lf,%.6lf,%.6lf)
    ", ans.c.x, ans.c.y, ans.r);
    		}
    		else if (op == "TangentLineThroughPoint")
    		{
    			for (int i = 0; i < 5; ++i) cin >> x[i];
    			Vtor vc[5];
    			int len = getTangents(Point(x[3], x[4]), Circle(Point(x[0], x[1]), x[2]), vc);
    			double tmp[5];
    			for (int i = 0; i < len; ++i)
    			{
    				double ang = angle(vc[i]);
    				if (ang < 0) ang += PI;
    				ang = fmod(ang, PI);
    				tmp[i] = ang * 180 / PI;
    			}
    			sort(tmp, tmp + len);
    			printf("[");
    			for (int i = 0; i < len; ++i)
    			{
    				printf("%.6lf", tmp[i]);
    				if (i != len - 1) printf(",");
    			}
    			printf("]
    ");
    		}
    		else if (op == "CircleThroughAPointAndTangentToALineWithRadius")
    		{
    			for (int i = 0; i < 7; ++i) cin >> x[i];
    			vector<Point> vc = solve4(Point(x[2], x[3]), Point(x[4], x[5]), x[6], Point(x[0], x[1]));
    			sort(vc.begin(), vc.end());
    			printf("[");
    			for (size_t i = 0; i < vc.size(); ++i)
    			{
    				printf("(%.6lf,%.6lf)", vc[i].x, vc[i].y);
    				if (i != vc.size() - 1) printf(",");
    			}
    			printf("]
    ");
    		}
    		else if (op == "CircleTangentToTwoLinesWithRadius")
    		{
    			for (int i = 0; i < 9; ++i) cin >> x[i];
    			vector<Point> vc = solve5(Point(x[0], x[1]), Point(x[2], x[3]), Point(x[4], x[5]), Point(x[6], x[7]), x[8]);
    			sort(vc.begin(), vc.end());
    			printf("[");
    			for (size_t i = 0; i < vc.size(); ++i)
    			{
    				printf("(%.6lf,%.6lf)", vc[i].x, vc[i].y);
    				if (i != vc.size() - 1) printf(",");
    			}
    			printf("]
    ");
    		}
    		else
    		{
    			for (int i = 0; i < 7; ++i) cin >> x[i];
    			vector<Point> vc = solve6(Circle(Point(x[0], x[1]), x[2]), Circle(Point(x[3], x[4]), x[5]), x[6]);
    			sort(vc.begin(), vc.end());
    			printf("[");
    			for (size_t i = 0; i < vc.size(); ++i)
    			{
    				printf("(%.6lf,%.6lf)", vc[i].x, vc[i].y);
    				if (i != vc.size() - 1) printf(",");
    			}
    			printf("]
    ");
    		}
    	}
    }


  • 相关阅读:
    CDN的实现原理
    【Android】 textview 中超出屏幕宽度的字符 省略号显示
    【用户反馈】海外产品大牛: 让用户反馈推着你走
    谷歌2013年搜索热榜 全球榜曼德拉抢榜首 中国区小爸爸第一
    数字(数码)舵机和模拟舵机的区别
    x86 版的 Arduino Intel Galileo 开发板的体验、分析和应用
    【Android】Android自定义属性,attr format取值类型
    android中Textview 和图片同时显示时,文字省略号显示,图片自动靠到右边
    Android webView打不开baidu网页的解决办法
    企鹅的石头
  • 原文地址:https://www.cnblogs.com/aukle/p/3231144.html
Copyright © 2020-2023  润新知