• Directions of zeros and poles for transfer matrices


    Before reading the valuable book Control System Synthesis: A Factorization Approach, written by Prof. M. Vidyasagar, I have no idea of the essences of directions of zeros for transfer matrices.

    In verifying the right (left) coprimeness of two transfer matrices, the right (left) direction of the transfer matrices should be used correctly. Suppose $G = NM^{-1}$ is a right factorization of a tansfer matrix $G$, we need to use right direction to check if the factorization has zero-pole cancellation or not. Ditto for the left factorization and left direction. Precisely, if  $N$ and $M$ have no common zeros with the same right direction, then $N$ and $M$ are right coprime. Otherwise, there exist $z_0 in mathbb{C}$ and nonzero vector $v$ such that
    egin{align*}
    egin{bmatrix}
    N(z_0)\
    M(z_0)
    end{bmatrix}v = 0.
    end{align*} Then the elements in the vector $left[egin{smallmatrix}
    N(s)\
    M(s)
    end{smallmatrix} ight]v$ have a common factor $(s-z_0)$. That is, $left[egin{smallmatrix}
    N(s)\
    M(s)
    end{smallmatrix} ight]v = left[egin{smallmatrix}
    n_1(s)\
    m_1(s)
    end{smallmatrix} ight](s-z_0)$ for some polynomials $n_1(s)$ and $m_1(s)$. Now let $V = left[v ~~ V_1 ight]$ be an invertible matrix augmented by $v$ and some $V_1$. Then
    egin{align*}
    egin{bmatrix}
    N(s)\
    M(s)
    end{bmatrix}V =
    egin{bmatrix}
    N(s)v & N(s)V_1\
    M(s)v & M(s)V_1
    end{bmatrix} =
    egin{bmatrix}
    n_1(s) & N(s)V_1\
    m_1(s) & M(s)V_1
    end{bmatrix}egin{bmatrix}
    s-z_0 & 0\
     0 & I
    end{bmatrix}
    end{align*} or, equivalently, egin{align*}
    egin{bmatrix}
    N(s)\
    M(s)
    end{bmatrix} =
    egin{bmatrix}
    N_1(s)\
    M_1(s)
    end{bmatrix}left(egin{bmatrix}
    s-z_0 & 0\
     0 & I
    end{bmatrix}V^{-1} ight)
    end{align*} where $N_1(s) = [n_1(s)~~N(s)V_1]$, $M_1(s) = [m_1(s)~~M(s)V_1]$. As $detleft(left[egin{smallmatrix}
    s-z_0 & 0\
     0 & I
    end{smallmatrix} ight]V^{-1} ight) = (s-z_0)det(V^{-1})$ is not a nonzero constant, $N(s),M(s)$ are not right coprime, and vice versa.

    However, to my mind it is meaningless to discuss the left common zero direction in right factorization. On the one hand, the dimensions of the left zero directions of $N$ and $M$ may not be the same. On the other hand, even though, in the square case, there exists a $z_0$ and a nonzero vector $w$ such that $w^*N(z_0)=0,w^*M(z_0)=0$, $N(s)$ and $M(s)$ are probably right coprime. For an example, suppose $G(s)$ has a following right factorization:
    egin{align*}
      N(s) = egin{bmatrix}
               s+1 & 0 \
               0 & s+2
             end{bmatrix},~~M(s) = egin{bmatrix}
               0 & s+1 \
               s+3 & 0
             end{bmatrix}.
    end{align*} Then it is easy to show that $z_0 = -1$ and $w = egin{bmatrix}
                1 \ 0
              end{bmatrix}$ would satisfy the left zero direction condition, while the right coprimeness of $N(s)$ and $M(s)$ can be proved. That is, $NM^{-1}$ is exactly a right coprime factorization of $G(s)$. In this case, we cannot say $M^{-1}N$ is NOT a left coprime factorization of $G(s)$ as $M^{-1}N e G$ indeed.

    In conclusion, $N$ and $M$ are right (left) coprime if and only if they have no common zero with the same right (left) directions.

  • 相关阅读:
    ObjectiveC字符串处理
    分享 10 个 jQuery 的语言翻译插件
    30 个实用的 jQuery 选项卡/导航教程推荐
    iphoneCocos2D游戏开发
    cocos2d和unity3d的比较
    将NSString转换编码集变为GBK或GB2312
    超过 40 款很有用而且很新的 jQuery 插件
    表格单元的表现形式
    ShareKit
    UI Prototype Design IDE( 界面原型设计工具 )
  • 原文地址:https://www.cnblogs.com/aujun/p/11559756.html
Copyright © 2020-2023  润新知