• Keras-保存和恢复模型


    1,share的内容

    • code to create the model, and
    • the trained weights, or parameters, for the model

    2,ways

    There are different ways to save TensorFlow models—depending on the API you're using

    3,Checkpoint callback usage

    3.1,以callback方式触发对checkpoint的在fit过程中的记录

    checkpoint_path = "training_1/cp.ckpt"

    checkpoint_dir = os.path.dirname(checkpoint_path)

    # Create checkpoint callback

    cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, 

                                                     save_weights_only=True,

                                                     verbose=1)

    model = create_model()

    model.fit(train_images, train_labels,  epochs = 10, 

              validation_data = (test_images,test_labels),

              callbacks = [cp_callback])  # pass callback to training

    3.2,检查目录

    ! ls {checkpoint_dir}

    3.3,找出最近的

    latest=tf.train.latest_checkpoint(checkpoint_dir)

    4,恢复至最近的checkpoint

    model = create_model()

    model.load_weights(latest)

    loss, acc = model.evaluate(test_images, test_labels)

    print("Restored model, accuracy: {:5.2f}%".format(100*acc))

    tf.train.latest_checkpoint(checkpoint_dir)

    5,手动save和restore

    # Save the weights
    model.save_weights('./checkpoints/my_checkpoint')

    # Restore the weights
    model = create_model()
    model.load_weights('./checkpoints/my_checkpoint')

    loss,acc = model.evaluate(test_images, test_labels)
    print("Restored model, accuracy: {:5.2f}%".format(100*acc))

    6,保存和恢复整个模型

    6.1,save

    contains the weight values, the model's configuration, and even the optimizer's configuration (depends on set up). This allows you to checkpoint a model and resume training later—from the exact same state—without access to the original code

    model = create_model()

    model.fit(train_images, train_labels, epochs=5)

    # Save entire model to a HDF5 file
    model.save('my_model.h5')

    6.2,恢复

    new_model = keras.models.load_model('my_model.h5')
    new_model.summary()

    7,keras如何保存和恢复模型

    7.1,创建模型

    model = create_model()

    model.fit(train_images, train_labels, epochs=5)

    7.2,保存模型

    Keras saves models by inspecting the architecture. Currently, it is not able to save TensorFlow optimizers (from tf.train). When using those you will need to re-compile the model after loading, and you will lose the state of the optimizer.

    saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models")

    !ls -l saved_models

    7.3,恢复模型

    new_model = tf.contrib.saved_model.load_keras_model(saved_model_path)
    new_model.summary()

    7.4,编译模型(因为不保存模型的优化器

    # The model has to be compiled before evaluating.
    # This step is not required if the saved model is only being deployed.

    new_model.compile(optimizer=tf.keras.optimizers.Adam(),
    loss=tf.keras.losses.sparse_categorical_crossentropy,
    metrics=['accuracy'])

    # Evaluate the restored model.
    loss, acc = new_model.evaluate(test_images, test_labels)
    print("Restored model, accuracy: {:5.2f}%".format(100*acc))

  • 相关阅读:
    UML 入门课程
    在Visio中建立数据库模型的步骤
    phpMyAdmin
    采用软件负载均衡器实现web服务器集群
    Javascript 调用后台方法
    log4net 使用相关要点汇总
    静栈/动堆
    国外web 2.0网站模板
    yum应用学习笔记
    分页 : 存储分页 :row_number
  • 原文地址:https://www.cnblogs.com/augustone/p/10507185.html
Copyright © 2020-2023  润新知