• Atitit 爬虫发展历史 在互联网发展初期,网站相对较少,信息查找比较容易。然而伴随互联网爆炸性的发展,普通网络用户想找到所需的资料简直如同大海捞针,这时为满足大众信息检索需求的专业搜索网站便应运


    Atitit 爬虫发展历史

     

    在互联网发展初期,网站相对较少,信息查找比较容易。然而伴随互联网爆炸性的发展,普通网络用户想找到所需的资料简直如同大海捞针,这时为满足大众信息检索需求的专业搜索网站便应运而生了。

    现代意义上的搜索引擎的祖先,是1990年由蒙特利尔大学学生Alan Emtage发明的Archie。虽然当时World Wide Web还未出现,但网络中文件传输还是相当频繁的,而且由于大量的文件散布在各个分散的FTP主机中,查询起来非常不便,因此AlanArchie工作原理与现在的搜索引擎已经很接近,它依靠脚本程序自动搜索网上的文件,然后对有关信息进行索引,供使用者以一定的表达式查询。由于Archie深受用户欢迎,受其启发,美国内华达System Computing Services大学于1993年开发了另一个与之非常相似的搜索工具,不过此时的搜索工具除了索引文件外,已能检索网页。

    当时,“机器人”一词在编程者中十分流行。电脑“机器人”(Computer Robot)是指某个能以人类无法达到的速度不间断地执行某项任务的软件程序。由于专门用于检索信息的“机器人”程序象蜘蛛一样在网络间爬来爬去,因此,搜索引擎的“机器人”程序就被称为“蜘蛛”程序。世界上第一个用于监测互联网发展规模的“机器人”程序是Matthew Gray开发的World wide Web Wanderer。刚开始它只用来统计互联网上的服务器数量,后来则发展为能够检索网站域名。与Wanderer相对应,Martin Koster于1993年10月创建了ALIWEB,它是Archie的HTTP版本。ALIWEB不使用“机器人”程序,而是靠网站主动提交信息来建立自己的链接索引,类似于现在我们熟知的Yahoo。

    随着互联网的迅速发展,使得检索所有新出现的网页变得越来越困难,因此,在Matthew Gray的Wanderer基础上,一些编程者将传统的“蜘蛛”程序工作原理作了些改进。其设想是,既然所有网页都可能有连向其他网站的链接,那么从跟踪一个网站的链接开始,就有可能检索整个互联网。到1993年底,一些基于此原理的搜索引擎开始纷纷涌现,其中以JumpStation、The World Wide Web Worm(Goto的前身,也就是今天Overture),和Repository-BasedSoftware Engineering (RBSE) spider最负盛名。

    然而JumpStation和WWW Worm只是以搜索工具在数据库中找到匹配信息的先后次序排列搜索结果,因此毫无信息关联度可言。而RBSE是第一个在搜索结果排列中引入关键字串匹配程 度概念的引擎 最早现代意义上的搜索引擎出现于1994年7月。当时Michael Mauldin将John Leavitt的蜘蛛程序接入到其索引程序中,创建了大家现在熟知的Lycos。同年4月,斯坦福(Stanford)大学的两名博士生,DavidFilo和美籍华人杨致远(Gerry Yang)共同创办了超级目录索引Yahoo,并成功地使搜索引擎的概念深入人心。从此搜索引擎进入了高速发展时期。目前,互联网上有名有姓的搜索引擎已 达数百家,其检索的信息量也与从前不可同日而语。比如最近风头正劲的Google,其数据库中存放的网页已达30亿之巨。

    随着互联网规模的急剧膨胀,一家搜索引擎光靠自己单打独斗已无法适应目前的市场状况,因此现在搜索引擎之间开始出现了分工协作,并有了专业的搜索引擎技术和搜索数据库服务提供商。象国外的Inktomi,它本身并不是直接面向用户的搜索引擎,但向包括Overture(原GoTo)、 LookSmart、MSN、HotBot等在内的其他搜索引擎提供全文网页搜索服务。国内的百度也属于这一类(注),搜狐和新浪用的就是它的技术。因此从这个意义上说,它们是搜索引擎的搜索引擎。

     

    几乎是和爬虫技术诞生的同一时刻,反爬虫技术也诞生了。在90年代开始有搜索引擎网站利用爬虫技术抓取网站时,一些搜索引擎从业者和网站站长通过邮件讨论定下了一项“君子协议”—— robots.txt。即网站有权规定网站中哪些内容可以被爬虫抓取,哪些内容不可以被爬虫抓取。这样既可以保护隐私和敏感信息,又可以被搜索引擎收录、增加流量。

    爬虫技术刚刚诞生时我们还处于上古时代,互联网是一片贤者云集的乐土,大多数从业者都会默守这一协定,毕竟那时候信息和数据都没什么油水可捞。但很快互联网上开始充斥着商品信息、机票价格、个人隐私……在利益的诱惑下,自然有些人会开始违法爬虫协议了。

     

    历史上第一桩关于爬虫的官司诞生在2000年,eBay将一家聚合价格信息的比价网站BE告上了法庭,eBay声称自己已经将哪些信息不能抓取写进了爬虫协议中,但BE违反了这一协议。但BE认为eBay上的内容属于用户集体贡献而不归用户所有,爬虫协议不能用作法律参考。

    还打出了“AI爬虫”的招牌,让爬虫脚本的行为模式更加接普通用户,让被爬的企业难以发掘,甚至还会利用图像识别技术破解网站用作拦截的验证码。

    在这种情况下,网站分辨人与机器人就变得更加困难也更加重要。很多网站也开始利用机器学习技术反制AI爬虫,比如为图形验证码动态打码应对图像识别。同时现在PC和移动终端的硬件技术发展,也让生物识别这种更复杂的验证手段有可能加入战斗。双方正在站在同一水平线上,利用技术互相斗法。

    可以说爬虫技术和反爬虫技术之间斗争了十几年,可真正的“战争”却从现在才刚刚开始。在彻底制服恶意爬虫之前,对于一切大数据、精准预测之类的“吹嘘”,我们最好保持着三分怀疑。

     

     

    反爬虫战争进行了十八年,但一切才刚刚开始.html

    爬虫历史简析 - illidanismine的博客 - CSDN博客.html

    “云采集爬虫”这几年的发展史.html

  • 相关阅读:
    Kubernetes二进制文件下载链接
    Python 中取代 Printf 大法的工具
    Python 七步捉虫法
    改善 Python 程序的 91 个建议
    最全的 API 接口集合
    一个可能是世界上最全的 API 接口集合库开源项目
    优质中文NLP资源集合,做项目一定用得到!
    Flair:一款简单但技术先进的NLP库
    取代 Python 多进程!伯克利开源分布式框架 Ray
    使用 PyHamcrest 执行健壮的单元测试
  • 原文地址:https://www.cnblogs.com/attilax/p/15197404.html
Copyright © 2020-2023  润新知