• POJ 2524, Ubiquitous Religions


    并查集


    Description
    There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

    You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

     

    Input
    The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

    Output
    For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

    Sample Input
    10 9
    1 2
    1 3
    1 4
    1 5
    1 6
    1 7
    1 8
    1 9
    1 10
    10 4
    2 3
    4 5
    4 8
    5 8
    0 0

    Sample Output
    Case 1: 1
    Case 2: 7

    Hint
    Huge input, scanf is recommended.

    Source
    Alberta Collegiate Programming Contest 2003.10.18


    // POJ2524.cpp : Defines the entry point for the console application.
    //

    #include 
    <iostream>
    using namespace std;

    void Make_Set(int x, int father[])
    {
        father[x] 
    = x;
    }

    int Find_Set(int x, int father[])
    {
        
    if (x != father[x])
            father[x] 
    = Find_Set(father[x], father);
        
    return father[x];
    }

    void Union_Set(int a, int b, int father[])
    {
        
    if (a == b) return;
        father[a] 
    = b;
    }

    int main(int argc, char* argv[])
    {
        
    int father[50001];
        
    int n, m, a, b;
        
    int t = 0;
        
    while(scanf("%d%d"&n, &m) && n!= 0 && m != 0)
        {
            
    for (int i = 1; i <= n; ++i)Make_Set(i,father);

            
    for (int i = 0; i < m; ++i)
            {
                scanf(
    "%d %d"&a, &b);
                a 
    = Find_Set(a,father);
                b 
    = Find_Set(b,father);
                
    if (a != b)
                {
                    
    --n;
                    Union_Set(a, b,father);
                }
            }
            cout
    <<"Case "<<++t<<""<<n<<"\n";
        }
        
    return 0;
    }

  • 相关阅读:
    nginx 配置https, 服务器是阿里云的ECS(亲测)
    jenkins 安装2.170版本 的问题汇中
    终于有人把“TCC分布式事务”实现原理讲明白了!
    springcloud(九) springboot Actuator + admin 监控
    springcloud(八) Hystrix监控
    springcloud(七) feign + Hystrix 整合 、
    springboot 2.0 自定义redis自动装配
    springboot 2.0 自动装配原理 以redis为例
    博文分类索引--Python
    【python】-- Ajax
  • 原文地址:https://www.cnblogs.com/asuran/p/1578948.html
Copyright © 2020-2023  润新知