求(sum_{i=1}^ngcd(i,n))
考虑枚举(gcd),现在答案变成这样
(sum_{d|n}d*f(d))
(f(d)=sum_{i=1}^n [gcd(i,n)==d])
考虑一下(f(d))如何求
显然(f(d)=varphi(n/d))
因为所有与(n/d)互质的数乘上(d)就是和(n)互质的数了
所有答案就是(sum_{d|n}d*varphi(n/d))
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define re register
#define LL long long
#define maxn 65580
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int phi[maxn],p[maxn],f[maxn];
LL n,ans;
int U;
inline LL solve(LL x)
{
if(x<=U) return phi[x];
LL now=1;
for(re int i=1;i<=p[0];i++)
if(x%p[i]==0)
{
LL tot=1;
while(x%p[i]==0) tot*=p[i],x/=p[i];
now*=(p[i]-1)*(tot/p[i]);
if(x==1) break;
}
if(x!=1) now*=(x-1);
return now;
}
int main()
{
scanf("%lld",&n);
f[1]=1,phi[1]=1;
U=std::sqrt(n);
for(re int i=2;i<=U;i++)
{
if(!f[i]) p[++p[0]]=i,phi[i]=i-1;
for(re int j=1;j<=p[0]&&p[j]*i<=U;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0)
{
phi[p[j]*i]=phi[i]*p[j];
break;
}
phi[p[j]*i]=phi[i]*(p[j]-1);
}
}
for(re LL i=1;i*i<=n;i++)
if(n%i==0)
{
ans+=i*solve(n/i);
if(n/i!=i) ans+=(n/i)*solve(i);
}
std::cout<<ans;
return 0;
}