• hdu 5751 Eades


    题意:对于整数序列$A[1...n]$定义$f(l, r)$为区间$[l, r]$内等于区间最大值元素的个数,定义$z[i]$为所有满足$f(l, r)=i$的区间总数。对于所有的$1 leq i leq n$,计算$z[i]$。

    分析:考虑由大往小枚举最大值,对于某一最大值为$M$的区间$[l, r)$,满足$a[p_i]=M$的元素将区间切割为若干子区间,那么这些子区间对长度的积对答案的某一项有等值的贡献,暴力枚举需要$O(n^2)$的时间,整体考虑那些对答案某一项有贡献的子区间对的积,它们满足卷积的性质。因此只需将长度序列与其反序列作类似多项式乘法的fft,即可将时间优化为$O(nlog(n))$。子区间递归处理即可。代码如下:

      1 #include <algorithm>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <string>
      5 #include <queue>
      6 #include <map>
      7 #include <set>
      8 #include <stack>
      9 #include <ctime>
     10 #include <cmath>
     11 #include <iostream>
     12 #include <assert.h>
     13 #pragma comment(linker, "/STACK:102400000,102400000")
     14 #define max(a, b) ((a) > (b) ? (a) : (b))
     15 #define min(a, b) ((a) < (b) ? (a) : (b))
     16 #define mp std :: make_pair
     17 #define st first
     18 #define nd second
     19 #define keyn (root->ch[1]->ch[0])
     20 #define lson (u << 1)
     21 #define rson (u << 1 | 1)
     22 #define pii std :: pair<int, int>
     23 #define pll pair<ll, ll>
     24 #define pb push_back
     25 #define type(x) __typeof(x.begin())
     26 #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
     27 #define FOR(i, s, t) for(int i = (s); i <= (t); i++)
     28 #define ROF(i, t, s) for(int i = (t); i >= (s); i--)
     29 #define dbg(x) std::cout << x << std::endl
     30 #define dbg2(x, y) std::cout << x << " " << y << std::endl
     31 #define clr(x, i) memset(x, (i), sizeof(x))
     32 #define maximize(x, y) x = max((x), (y))
     33 #define minimize(x, y) x = min((x), (y))
     34 using namespace std;
     35 typedef long long ll;
     36 const int int_inf = 0x3f3f3f3f;
     37 const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
     38 const int INT_INF = (int)((1ll << 31) - 1);
     39 const double double_inf = 1e30;
     40 const double eps = 1e-14;
     41 typedef unsigned long long ul;
     42 typedef unsigned int ui;
     43 inline int readint(){
     44     int x;
     45     scanf("%d", &x);
     46     return x;
     47 }
     48 inline int readstr(char *s){
     49     scanf("%s", s);
     50     return strlen(s);
     51 }
     52 
     53 class cmpt{
     54 public:
     55     bool operator () (const int &x, const int &y) const{
     56         return x > y;
     57     }
     58 };
     59 
     60 int Rand(int x, int o){
     61     //if o set, return [1, x], else return [0, x - 1]
     62     if(!x) return 0;
     63     int tem = (int)((double)rand() / RAND_MAX * x) % x;
     64     return o ? tem + 1 : tem;
     65 }
     66 void data_gen(){
     67     srand(time(0));
     68     freopen("in.txt", "w", stdout);
     69     int kases = 20;
     70     printf("%d
    ", kases);
     71     while(kases--){
     72         int sz = 6e4;
     73         printf("%d
    ", sz);
     74         FOR(i, 1, sz) printf("%d ", Rand(sz, 1));
     75         printf("
    ");
     76     }
     77 }
     78 
     79 struct cmpx{
     80     bool operator () (int x, int y) { return x > y; }
     81 };
     82 const int maxn = 6e4 + 10;
     83 int a[maxn];
     84 int n;
     85 struct Seg{
     86     int l, r, v;
     87 }seg[maxn << 2];
     88 void build(int u, int l, int r){
     89     seg[u].l = l, seg[u].r = r;
     90     if(seg[u].r - seg[u].l < 2){
     91         seg[u].v = l;
     92         return;
     93     }
     94     int mid = (l + r) >> 1;
     95     build(lson, l, mid), build(rson, mid, r);
     96     if(a[seg[rson].v] > a[seg[lson].v]) seg[u].v = seg[rson].v;
     97     else seg[u].v = seg[lson].v;
     98 }
     99 int query(int u, int l, int r){
    100     if(seg[u].l == l && seg[u].r == r) return seg[u].v;
    101     int mid = (seg[u].l + seg[u].r) >> 1;
    102     if(r <= mid) return query(lson, l, r);
    103     else if(l >= mid) return query(rson, l, r);
    104     int lhs = query(lson, l, mid), rhs = query(rson, mid, r);
    105     if(a[rhs] > a[lhs]) return rhs;
    106     return lhs;
    107 }
    108 int maxi;
    109 vector<int> pos[maxn];
    110 int idx[maxn];
    111 void init(){
    112     maxi = -1;
    113     FOR(i, 1, n) maximize(maxi, a[i]);
    114     FOR(i, 1, maxi) pos[i].clear();
    115     FOR(i, 1, n){
    116         int sz = pos[a[i]].size();
    117         idx[i] = sz;
    118         pos[a[i]].pb(i);
    119     }
    120 }
    121 ll z[maxn];
    122 ll c[maxn], d[maxn], e[maxn << 1];
    123 int k;
    124 const double PI = 2 * asin(1.);
    125 struct Complex{
    126     double x, y;
    127     Complex(double x = 0, double y = 0) : x(x), y(y) {}
    128 };
    129 Complex operator + (const Complex &lhs, const Complex &rhs){
    130     return Complex(lhs.x + rhs.x, lhs.y + rhs.y);
    131 }
    132 Complex operator - (const Complex &lhs, const Complex &rhs){
    133     return Complex(lhs.x - rhs.x, lhs.y - rhs.y);
    134 }
    135 Complex operator * (const Complex &lhs, const Complex &rhs){
    136     double tl = lhs.x * rhs.x, tr = lhs.y * rhs.y, tt = (lhs.x + lhs.y) * (rhs.x + rhs.y);
    137     return Complex(lhs.x * rhs.x - lhs.y * rhs.y, lhs.x * rhs.y + lhs.y * rhs.x);
    138 }
    139 Complex w[2][maxn << 2], x[maxn << 2], y[maxn << 2];
    140 
    141 void fft(Complex x[], int k, int v){
    142     int i, j, l;
    143     Complex tem;
    144     for(i = j = 0; i < k; i++){
    145         if(i > j) tem = x[i], x[i] = x[j], x[j] = tem;
    146         for(l = k >> 1; (j ^= l) < l; l >>= 1) ;
    147     }
    148     for(i = 2; i <= k; i <<= 1) for(j = 0; j < k; j += i) for(l = 0; l < i >> 1; l++){
    149         tem = x[j + l + (i >> 1)] * w[v][k / i * l];
    150         x[j + l + (i >> 1)] = x[j + l] - tem;
    151         x[j + l] = x[j + l] + tem;
    152     }
    153 }
    154 int tot;
    155 void solve(int l, int r){
    156     if(l >= r) return;
    157     if(r - l == 1){
    158         ++z[1];
    159         return;
    160     }
    161     int p = query(1, l, r);
    162     int tem = idx[p];
    163     int sz = pos[a[p]].size();
    164     k = 0;
    165     c[k++] = p - l + 1;
    166     while(tem  + 1 < sz && pos[a[p]][tem + 1] < r) c[k++] = pos[a[p]][tem + 1] - pos[a[p]][tem], ++tem;
    167     c[k++] = r - pos[a[p]][tem];
    168     ROF(i, k - 1, 0) d[i] = c[k - 1 - i];
    169     int len;
    170     for(len = 1; len < (k << 1); len <<= 1) ;
    171     FOR(i, 0, len) w[1][len - i] = w[0][i] = Complex(cos(PI * 2 * i / len), sin(PI * 2 * i / len));
    172     FOR(i, 0, k - 1) x[i] = Complex(c[i], 0);
    173     FOR(i, k, len - 1) x[i] = Complex(0, 0);
    174     fft(x, len, 0);
    175     FOR(i, 0, k - 1) y[i] = Complex(d[i], 0);
    176     FOR(i, k, len - 1) y[i] = Complex(0, 0);
    177     fft(y, len, 0);
    178     FOR(i, 0, len - 1) x[i] = x[i] * y[i];
    179     fft(x, len, 1);
    180     FOR(i, 0, 2 * k - 2) e[i] = (ll)(x[i].x / len + .5);
    181     FOR(i, 0, k - 2) z[k - 1 - i] += e[i];
    182     tem = idx[p];
    183     solve(l, p);
    184     while(tem + 1 < sz && pos[a[p]][tem + 1] < r) solve(pos[a[p]][tem] + 1, pos[a[p]][tem + 1]), ++tem;
    185     solve(pos[a[p]][tem] + 1, r);
    186 }
    187 int main(){
    188     //data_gen(); return 0;
    189     //C(); return 0;
    190     int debug = 0;
    191     if(debug) freopen("in.txt", "r", stdin);
    192     //freopen("out.txt", "w", stdout);
    193     int T = readint();
    194     while(T--){
    195         n = readint();
    196         FOR(i, 1, n) a[i] = readint();
    197         build(1, 1, n + 1);
    198         init();
    199         clr(z, 0);
    200         tot = 0;
    201         solve(1, n + 1);
    202         ll ans = 0;
    203         FOR(i, 1, n) ans += z[i] ^ i;
    204         printf("%lld
    ", ans);
    205     }
    206     return 0;
    207 }
    code:
  • 相关阅读:
    ZOJ
    ZOJ
    ZOJ
    ZOJ
    04-树7 二叉搜索树的操作集(30 point(s)) 【Tree】
    05-树8 File Transfer(25 point(s)) 【并查集】
    PAT 天梯赛 L2-025. 分而治之 【图】
    PAT 天梯赛 L2-028. 秀恩爱分得快 【数据处理】
    2018年东北农业大学春季校赛 E wyh的集合 【数学】
    2018年东北农业大学春季校赛 E wyh的阶乘 【数学】
  • 原文地址:https://www.cnblogs.com/astoninfer/p/5778361.html
Copyright © 2020-2023  润新知