• [leetcode] Largest Rectangle in Histogram @ Python [图解] [很难]


    原题地址:https://oj.leetcode.com/problems/largest-rectangle-in-histogram/

    题意:

    Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

    Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

    The largest rectangle is shown in the shaded area, which has area = 10 unit.

    For example,
    Given height = [2,1,5,6,2,3],
    return 10.

    解题思路:又是一道很巧妙的算法题。

    Actually, we can decrease the complexity by using stack to keep track of the height and start indexes. Compare the current height with previous one.

    Case 1: current > previous (top of height stack)
    Push current height and index as candidate rectangle start position.

    Case 2: current = previous
    Ignore.

    Case 3: current < previous
    Need keep popping out previous heights, and compute the candidate rectangle with height and width (current index - previous index). Push the height and index to stacks.

    (Note: it is better use another different example to walk through the steps, and you will understand it better).

    [最优解法] (下面提到的图2是制题目里面的第2个图)

    class Solution:
        # @param height, a list of integer
        # @return an integer
        def largestRectangleArea(self, height):
            #如图2所示,从左到右处理直方,当i = 4 时,小于当前栈顶(即直方i=3),对于直方i=3,无论后面还是前面的直方,都不可能得到比目前栈顶元素更高的高度了,处理掉直方i=3(计算从直方i=3到直方i=4 之间的矩形的面积,然后从栈里弹出);对于直方i=2 也是如此;直到碰到比直方i=4 更矮的直方i=1。这就意味着,可以维护一个递增的栈,每次比较栈顶与当前元素。如果当前元素大于栈顶元素,则入栈,否则合并现有栈,直至栈顶元素小于当前元素
            stack, area, i = [], 0, 0
            height.append(0)
            while i < len(height):
                if stack == [] or height[i] > height[stack[-1]]:
                    stack.append(i)
                    i += 1
                else:
                    curr = stack.pop()
                    width = i if stack == [] else (i - 1) - stack[-1]  #Note; i – 1 resulted from i += 1
                    area = max(area, height[curr] * width)
            return area

    这个是别人的解法,但是过于累赘。

    class Solution:
        # @param height, a list of integer
        # @return an integer
        # @good solution!
        def largestRectangleArea(self, height):
            stack=[]; i=0; area=0
            while i<len(height):
                if stack==[] or height[i]>height[stack[len(stack)-1]]:
                    stack.append(i)
                else:
                    curr=stack.pop()
                    width=i if stack==[] else i-stack[len(stack)-1]-1
                    area=max(area,width*height[curr])
                    i-=1
                i+=1
            while stack!=[]:
                curr=stack.pop()
                width=i if stack==[] else len(height)-stack[len(stack)-1]-1
                area=max(area,width*height[curr])
            return area

    常规解法,所有的面积都算一遍,时间复杂度O(N^2)。不过会TLE。

    class Solution:
        # @param height, a list of integer
        # @return an integer
        # @good solution!
        def largestRectangleArea(self, height):
            maxarea=0
            for i in range(len(height)):
                min = height[i]
                for j in range(i, len(height)):
                    if height[j] < min: min = height[j]
                    if min*(j-i+1) > maxarea: maxarea = min*(j-i+1)
            return maxarea
  • 相关阅读:
    Django 常用过滤器
    计算机概论(2)
    计算机概论(1)
    Django URL视图
    模板标签之if、for
    Django 渲染模板、路径配置、变量使用。

    字符串用法
    hashlib模块
    小列
  • 原文地址:https://www.cnblogs.com/asrman/p/4001381.html
Copyright © 2020-2023  润新知