原题地址:https://oj.leetcode.com/problems/rotate-image/
题意:
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Follow up:
Could you do this in-place?
解题思路1:先将矩阵转置,然后将矩阵的每一行翻转,就可以得到所要求的矩阵了。为便于理解,制作了如下示意图.
Figure 1: Illustration of transpose operation. Only the elements highlighted by green need be moved around. Do not touch yellow ones.
class Solution: # @param matrix, a list of lists of integers # @return a list of lists of integers def rotate(self, matrix): n = len(matrix) for i in range(n): for j in range(i+1, n): matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j] #先将矩阵转置 for i in range(n): matrix[i].reverse() #然后将矩阵的每一行翻转 return matrix
解题思路2:首先沿着副对角线翻转一次,然后沿着水平中线翻转一次,就可以得到所要求的矩阵了。时间复杂度O(n^2),空间复杂度O(1)
class Solution: # @param matrix, a list of lists of integers # @return a list of lists of integers def rotate(self, matrix): #思路2,时间复杂度O(n^2),空间复杂度O(1) n = len(matrix) for i in range(n): for j in range(n-i): #沿着副对角线反转 matrix[i][j], matrix[n-1-j][n-1-i] = matrix[n-1-j][n-1-i], matrix[i][j] for i in range(n/2): #沿着水平中线反转 matrix[i], matrix[n - 1 - i] = matrix[n - 1 - i], matrix[i] return matrix
为了方便复习比较, 现在把最优化后的代码附在下面:
class Solution: # @param matrix, a list of lists of integers # @return a list of lists of integers def rotate(self, matrix): #思路1,时间复杂度O(n^2),空间复杂度O(1) n = len(matrix) for i in range(1,n): for j in range(i): # lower triangular matrix matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j] #先将矩阵转置,equal to 沿着主对角线翻转 for i in range(n): matrix[i].reverse() #然后将矩阵的每一行翻转 return matrix """ #思路2,时间复杂度O(n^2),空间复杂度O(1) n = len(matrix) for i in range(n/2): #沿着水平中线翻转 matrix[i], matrix[n - 1 - i] = matrix[n - 1 - i], matrix[i] for i in range(1,n): #Begin with '1' instead of 0 can avoide action on main-diagonal for j in range(i): #沿着主对角线翻转; matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j] return matrix """ """ #思路3,时间复杂度O(n^2),空间复杂度O(1) n = len(matrix) for i in range(n-1): for j in range(n-i-1): #沿着副对角线反转;'-1' can avoide action on counter-diagonal matrix[i][j], matrix[n-1-j][n-1-i] = matrix[n-1-j][n-1-i], matrix[i][j] for i in range(n/2): #沿着水平中线反转 matrix[i], matrix[n - 1 - i] = matrix[n - 1 - i], matrix[i] return matrix """
Note:
本文参考了如下资源,但是精细化了对边界情形的考虑,避免了不必要的操作.
reference: http://www.cnblogs.com/zuoyuan/p/3772978.html