pd.Series(list of values) |
creste a list with default integer index, you can access value by using s[index] |
pd.read_csv("name of csv") |
|
pd.concat((df1, df3), axis= ,join = "" sort) |
concatenate dataframes |
|
|
df = pd.DataFrame() |
|
df.info() |
|
df.index |
*no brackets, return a list of index |
df.empty |
return a boolean, True if empty |
df.ndim |
return dimension count |
df.shape |
|
df.size |
get count of elements |
df.at([index, column]) |
access single element |
df.reset_index() |
|
df.append() |
smilar to pd.concat |
df.query('condition') |
such as 'a>100 and 'b<20' |
df.to_html() |
|
df.max() |
default axis=0, return maximum of every column |
df.max().max() |
maximum of the table |
df.mean() |
|
df.mean().mean() |
|
df.fillna() |
|
df.axes |
axes info |
df.columns |
columns name, can be rewriten |
df.dtype |
|
df.iterrows() |
iterate over rows |
df.rename() |
rename the column name |
df.select_dtype(include='typename') |
select data by datatype |
df.sort_values() |
sort by column name |
df.sort_index() |
sort by index |
df.drop() |
delete columns |
df.set_index() |
set certain column as index |
df.reindex() |
change order of columns |
df.replace() |
replace values |
df.loc()/df.iloc() |
|
df.append() |
add rows |
df.head() |
get first n rows |
df.to_numpy() |
to numpy array |