• 树链剖分 题目


    SPOJ - QTREE3 Query on a tree again!

    Description

    You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N. In the start, the color of any node in the tree is white.

    We will ask you to perfrom some instructions of the following form:

    • 0 i : change the color of the i-th node (from white to black, or from black to white);
      or
    • 1 v : ask for the id of the first black node on the path from node 1 to node v. if it doesn't exist, you may return -1 as its result.

    Input

    In the first line there are two integers N and Q.

    In the next N-1 lines describe the edges in the tree: a line with two integers a bdenotes an edge between a and b.

    The next Q lines contain instructions "0 i" or "1 v" (1 ≤ i, v ≤ N).

    Output

    For each "1 v" operation, write one integer representing its result.

    Example

    Input:

    9 8
    1 2
    1 3
    2 4
    2 9
    5 9
    7 9
    8 9
    6 8
    1 3
    0 8
    1 6
    1 7
    0 2
    1 9
    0 2
    1 9 
    

    Output:

    -1
    8
    -1
    2
    -1
    

    Constraints & Limits

    There are 12 real input files.

    For 1/3 of the test cases, N=5000, Q=400000.

    For 1/3 of the test cases, N=10000, Q=300000.

    For 1/3 of the test cases, N=100000, Q=100000.

    题解

    树链剖分后,用线段树或者树状数组维护区间和,找距离1最近的黑点即找区间和大于零的最小的左端点,对于线段树查询,我们优先访问左儿子即可,对于树状数组可以套二分查询深度最小的点

    代码

    二分+树状数组

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1e5 + 10;
    typedef long long ll;
    vector<int> G[N];
    int n, m;
    int fa[N];
    int son[N];
    int sze[N];
    int dep[N];
    void dfs1(int u, int f) {
        sze[u] = 1;
        fa[u] = f;
        son[u] = 0;
        dep[u] = dep[f] + 1;
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (v == f) continue;
            dfs1(v, u);
            sze[u] += sze[v];
            if (sze[v] > sze[son[u]]) son[u] = v;
        }
    }
    int top[N];
    int cnt;
    int pos[N];
    int mp[N];
    void dfs2(int u, int f, int t) {
        top[u] = t;
        pos[u] = ++cnt;
        mp[cnt] = u;
        if (son[u]) dfs2(son[u], u, t);
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (v == f || v == son[u]) continue;
            dfs2(v, u, v);
        }
    }
    int a[N];
    int d[N];
    void update(int x, int v) {
        for (int i = x; i <= n; i += i & (-i)) d[i] += v;
    }
    int query(int x) {
        int ans = 0;
        for (int i = x; i; i -= i & (-i)) ans += d[i];
        return ans;
    }
    int calcans(int u) {
        int ans = 0;
        int res = -1;
        while (top[u] != top[1]) {
            if (query(pos[u]) - query(pos[top[u]] - 1) > 0) {
                int l = pos[top[u]], r = pos[u];
                int tl = l;
                while (l <= r) {
                    int mid = (l + r) >> 1;
                    if (query(mid) - query(tl - 1) > 0) {
                        r = mid - 1;
                        ans = mid;
                    }
                    else l = mid + 1;
                }
                if (ans) res = mp[ans];
            }
            u = fa[top[u]];
        }
        if (query(pos[u]) - query(pos[1] - 1) > 0) {
            int l = pos[1], r = pos[u];
            while (l <= r) {
                int mid = (l + r) >> 1;
                if (query(mid) > 0) {
                    r = mid - 1;
                    ans = mid;
                }
                else l = mid + 1;
            }
            if (ans) res = mp[ans];
        }
        return res;
    }
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
            scanf("%d%d", &n, &m);
            for (int i = 1; i <= n; i++) {
                G[i].clear();
            }
            memset(d, 0, sizeof(d));
            memset(sze, 0, sizeof(sze));
            memset(a, 0, sizeof(a));
            for (int i = 1; i < n; i++) {
                int u, v;
                scanf("%d%d", &u, &v);
                G[u].push_back(v);
                G[v].push_back(u);
            }
    
            dep[0] = 0;
            dfs1(1, 0);
            cnt = 0;
            dfs2(1, 0, 1);
    
            int ch, k;
            for (int i = 1; i <= m; i++) {
                scanf("%d%d", &ch, &k);
                switch(ch) {
                    case 1: printf("%d
    ", calcans(k)); break;
                    case 0: {
                        if (a[k] == 0) {
                            update(pos[k], 1);
                            a[k] = 1;
                        }
                        else {
                            update(pos[k], -1);
                            a[k] = 0;
                        }
                        break;
                    }
    
                }
            }
    
        return 0;
    }
    

    线段树

    #include <bits/stdc++.h>
    #define lson (o << 1)
    #define rson (o << 1 | 1)
    using namespace std;
    const int N = 1e5 + 10;
    typedef long long ll;
    vector<int> G[N];
    int n, m;
    int fa[N];
    int son[N];
    int sze[N];
    int dep[N];
    void dfs1(int u, int f) {
        sze[u] = 1;
        fa[u] = f;
        son[u] = 0;
        dep[u] = dep[f] + 1;
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (v == f) continue;
            dfs1(v, u);
            sze[u] += sze[v];
            if (sze[v] > sze[son[u]]) son[u] = v;
        }
    }
    int top[N];
    int cnt;
    int pos[N];
    int mp[N];
    void dfs2(int u, int f, int t) {
        top[u] = t;
        pos[u] = ++cnt;
        mp[cnt] = u;
        if (son[u]) dfs2(son[u], u, t);
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (v == f || v == son[u]) continue;
            dfs2(v, u, v);
        }
    }
    int a[N];
    int sumv[N << 2];
    void pushup(int o) {
        sumv[o] = sumv[lson] + sumv[rson];
    }
    void update(int o, int l, int r, int pos) {
        if (l == r) {
            sumv[o] = !sumv[o];
            return;
        }
        int mid = (l + r) >> 1;
        if (pos <= mid) update(lson, l, mid, pos);
        else update(rson, mid + 1, r, pos);
        pushup(o);
    }
    int query(int o, int l, int r, int ql, int qr) {
        if (sumv[o] == 0) return 0;
        if (l == r) return l;
        int mid = (l + r) >> 1;
        int ans = 0;
        if (ql <= mid) ans = query(lson, l, mid, ql, qr);
        if (ans) return ans;
        if (qr > mid) ans = query(rson, mid + 1, r, ql, qr);
        return ans;
    }
    int calcans(int u) {
        int ans;
        int res = -1;
        while (1) {
            ans = query(1, 1, n, pos[top[u]], pos[u]);
            if (ans) res = mp[ans];
            if (u == 1 || top[u] == 1) break;
            u = fa[top[u]];
        }
        return res;
    }
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
            scanf("%d%d", &n, &m);
            for (int i = 1; i <= n; i++) {
                G[i].clear();
            }
            memset(sumv, 0, sizeof(sumv));
            memset(sze, 0, sizeof(sze));
            memset(a, 0, sizeof(a));
            for (int i = 1; i < n; i++) {
                int u, v;
                scanf("%d%d", &u, &v);
                G[u].push_back(v);
                G[v].push_back(u);
            }
    
            dep[0] = 0;
            dfs1(1, 0);
            cnt = 0;
            dfs2(1, 0, 1);
    
            int ch, k;
            for (int i = 1; i <= m; i++) {
                scanf("%d%d", &ch, &k);
                switch(ch) {
                    case 1: printf("%d
    ", calcans(k)); break;
                    case 0: {
                        update(1, 1, n, pos[k]);
                        break;
                    }
    
                }
            }
    
        return 0;
    }
    

    BZOJ-2243 染色

    Description

    给定一棵有n个节点的无根树和m个操作,操作有2类:

    1、将节点a到节点b路径上所有点都染成颜色c;

    2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),

    如“112221”由3段组成:“11”、“222”和“1”。

    请你写一个程序依次完成这m个操作。

    Input

    第一行包含2个整数n和m,分别表示节点数和操作数;

    第二行包含n个正整数表示n个节点的初始颜色

    下面 行每行包含两个整数x和y,表示x和y之间有一条无向边。

    下面 行每行描述一个操作:

    “C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;

    “Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。

    Output

    对于每个询问操作,输出一行答案。

    Sample Input

    6 5
    2 2 1 2 1 1
    1 2
    1 3
    2 4
    2 5
    2 6
    Q 3 5
    C 2 1 1
    Q 3 5
    C 5 1 2
    Q 3 5
    

    Sample Output

    3
    1
    2
    

    Hint

    数N<=105,操作数M<=105,所有的颜色C为整数且在[0, 10^9]之间。

    题解

    树剖后用线段树维护每个区间的颜色段数,和左端点右端点的颜色是什么,合并时判断颜色是否一样即可

    代码

    #include <bits/stdc++.h>
    #define lson (o << 1)
    #define rson (o << 1 | 1)
    using namespace std;
    const int N = 1e5 + 10;
    typedef long long ll;
    vector<int> G[N];
    const ll inf = 1e9;
    int n;
    ll val[N];
    int fa[N];
    int son[N];
    int sze[N];
    int dep[N];
    void dfs1(int u, int f) {
        sze[u] = 1;
        fa[u] = f;
        son[u] = 0;
        dep[u] = dep[f] + 1;
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (v == f) continue;
            dfs1(v, u);
            sze[u] += sze[v];
            if (sze[v] > sze[son[u]]) son[u] = v;
        }
    }
    int top[N];
    int cnt;
    int pos[N];
    int a[N];
    void dfs2(int u, int f, int t) {
        top[u] = t;
        pos[u] = ++cnt;
        a[cnt] = val[u];
        if (son[u]) dfs2(son[u], u, t);
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i];
            if (v == f || v == son[u]) continue;
            dfs2(v, u, v);
        }
    }
    ll sumv[N << 2];
    ll cov[N << 2];
    ll L[N << 2];
    ll R[N << 2];
    void pushup(int o) {
        L[o] = L[lson];
        R[o] = R[rson];
        if (R[lson] == L[rson]) {
            sumv[o] = sumv[lson] + sumv[rson] - 1;
        }
        else sumv[o] = sumv[lson] + sumv[rson];
    }
    void pushdown(int o, int l, int r) {
        if (cov[o]) {
            cov[lson] = cov[rson] = cov[o];
            sumv[lson] = sumv[rson] = 1;
            L[lson] = R[lson] = cov[o];
            L[rson] = R[rson] = cov[o];
            cov[o] = 0;
        }
    }
    void build(int o, int l, int r) {
        if (l == r) {
            sumv[o] = 1;
            cov[o] = 0;
            L[o] = R[o] = a[l];
            return;
        }
        int mid = (l + r) >> 1;
        build(lson, l, mid); build(rson, mid + 1, r);
        pushup(o);
    }
    void update(int o, int l, int r, int ql, int qr, ll v) {
        if (ql <= l && r <= qr) {
            sumv[o] = 1;
            cov[o] = v;
            L[o] = R[o] = v;
            return;
        }
        int mid = (l + r) >> 1;
        pushdown(o, l, r);
        if (ql <= mid) update(lson, l, mid, ql, qr, v);
        if (qr > mid) update(rson, mid + 1, r, ql, qr, v);
        pushup(o);
    }
    ll query(int o, int l, int r, int ql, int qr) {
        if (ql == l && r == qr) {
            return sumv[o];
        }
        int mid = (l + r) >> 1;
        pushdown(o, l, r);
        if (qr <= mid) return query(lson, l, mid, ql, qr);
        else if (ql > mid) return query(rson, mid + 1, r, ql, qr);
        else {
            ll res = query(lson, l, mid, ql, mid) + query(rson, mid + 1, r, mid + 1, qr);
            if (R[lson] == L[rson]) return res - 1;
            else return res;
        }
    }
    ll querycor(int o, int l, int r, int pos) {
        if (l == r) {
            return L[o];
        }
        int mid = (l + r) >> 1;
        pushdown(o, l, r);
        if (pos <= mid) return querycor(lson, l, mid, pos);
        else return querycor(rson, mid + 1, r, pos);
    }
    ll calcsum(int u, int v) {
        ll ans = 0;
        while (top[u] != top[v]) {
            if (dep[top[u]] < dep[top[v]]) swap(u, v);
            ans += query(1, 1, n, pos[top[u]], pos[u]);
            int tmp = top[u];
            u = fa[top[u]];
            if (querycor(1, 1, n, pos[tmp]) == querycor(1, 1, n, pos[u])) ans--;
        }
        if (dep[u] < dep[v]) swap(u, v);
        ans += query(1, 1, n, pos[v], pos[u]);
        return ans;
    }
    void update1(int u, int v, ll val) {
        while (top[u] != top[v]) {
            if (dep[top[u]] < dep[top[v]]) swap(u, v);
            update(1, 1, n, pos[top[u]], pos[u], val);
            u = fa[top[u]];
        }
        if (dep[u] < dep[v]) swap(u, v);
        update(1, 1, n, pos[v], pos[u], val);
    }
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        scanf("%d", &n);
        int m; scanf("%d", &m);
        for (int i = 1; i <= n; i++) scanf("%lld", &val[i]);
        for (int i = 1; i < n; i++) {
            int u, v;
            scanf("%d%d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
    
        dep[0] = 0;
        dfs1(1, 0);
        cnt = 0;
        dfs2(1, 0, 1);
        build(1, 1, n);
    
        char ch[10];
        for (int i = 1; i <= m; i++) {
            scanf("%s", ch);
            int l, r, k;
            ll v;
            switch(ch[0]) {
                case 'Q': scanf("%d%d", &l, &r); printf("%lld
    ", calcsum(l, r)); break;
                case 'C': {
                    scanf("%d%d%lld", &l, &r, &v);
                    update1(l, r, v);
                    break;
                }
    
            }
        }
        return 0;
    }
    

    BZOJ-2157 旅游

    Description

    Ray 乐忠于旅游,这次他来到了T 城。T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接。为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路径。换句话说, T 城中只有N − 1 座桥。Ray 发现,有些桥上可以看到美丽的景色,让人心情愉悦,但有些桥狭窄泥泞,令人烦躁。于是,他给每座桥定义一个愉悦度w,也就是说,Ray 经过这座桥会增加w 的愉悦度,这或许是正的也可能是负的。有时,Ray 看待同一座桥的心情也会发生改变。现在,Ray 想让你帮他计算从u 景点到v 景点能获得的总愉悦度。有时,他还想知道某段路上最美丽的桥所提供的最大愉悦度,或是某段路上最糟糕的一座桥提供的最低愉悦度。

    Input

    输入的第一行包含一个整数N,表示T 城中的景点个数。景点编号为 0...N − 1。接下来N − 1 行,每行三个整数u、v 和w,表示有一条u 到v,使 Ray 愉悦度增加w 的桥。桥的编号为1...N − 1。|w| <= 1000。输入的第N + 1 行包含一个整数M,表示Ray 的操作数目。接下来有M 行,每行描述了一个操作,操作有如下五种形式: C i w,表示Ray 对于经过第i 座桥的愉悦度变成了w。 N u v,表示Ray 对于经过景点u 到v 的路径上的每一座桥的愉悦度都变成原来的相反数。 SUM u v,表示询问从景点u 到v 所获得的总愉悦度。 MAX u v,表示询问从景点u 到v 的路径上的所有桥中某一座桥所提供的最大愉悦度。 MIN u v,表示询问从景点u 到v 的路径上的所有桥中某一座桥所提供的最小愉悦度。测试数据保证,任意时刻,Ray 对于经过每一座桥的愉悦度的绝对值小于等于1000。

    Output

    对于每一个询问(操作S、MAX 和MIN),输出答案。

    Sample Input

    3
    0 1 1
    1 2 2
    8
    SUM 0 2
    MAX 0 2
    N 0 1
    SUM 0 2
    MIN 0 2
    C 1 3
    SUM 0 2
    MAX 0 2
    

    Sample Output

    3
    2
    1
    -1
    5
    3
    

    Hint

    一共有10 个数据,对于第i (1 <= i <= 10) 个数据, N = M = i * 2000。

    题解

    本题给的是边权,对于边权我们不太方便树链剖分,我们将每条边的边权给子节点,这样根节点点权为0,然后就可以正常树剖了,对于取区间相反数的操作,我们就将最大值和最小值交换再取负数就可以了,区间和直接取负数.

    #include <bits/stdc++.h>
    #define lson (o << 1)
    #define rson (o << 1 | 1)
    using namespace std;
    const int N = 1e5 + 10;
    typedef long long ll;
    struct node {
        int v, w;
        node(int v = 0, int w = 0): v(v), w(w) {}
    };
    vector<node> G[N];
    const int inf = 1e9;
    int n;
    int val[N];
    int fa[N];
    int son[N];
    int sze[N];
    int dep[N];
    void dfs1(int u, int f) {
        sze[u] = 1;
        fa[u] = f;
        son[u] = 0;
        dep[u] = dep[f] + 1;
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i].v;
            if (v == f) continue;
            val[v] = G[u][i].w;
            dfs1(v, u);
            sze[u] += sze[v];
            if (sze[v] > sze[son[u]]) {
                son[u] = v;
            }
        }
    }
    int top[N];
    int cnt;
    int pos[N];
    int a[N];
    void dfs2(int u, int f, int t) {
        top[u] = t;
        pos[u] = ++cnt;
        a[cnt] = val[u];
        if (son[u]) dfs2(son[u], u, t);
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i].v;
            if (v == f || v == son[u]) continue;
            dfs2(v, u, v);
        }
    }
    int sumv[N << 2];
    int maxv[N << 2];
    int minv[N << 2];
    void pushup(int o) {
        sumv[o] = sumv[lson] + sumv[rson];
        maxv[o] = max(maxv[lson], maxv[rson]);
        minv[o] = min(minv[lson], minv[rson]);
    }
    int negv[N << 2];
    void myswap(int x) {
        negv[x] ^= 1;
        swap(maxv[x], minv[x]);
        maxv[x] = -maxv[x];
        minv[x] = -minv[x];
        sumv[x] = -sumv[x];
    }
    void pushdown(int o, int l, int r) {
        if (negv[o]) {
            myswap(lson); myswap(rson);
            negv[o] = 0;
        }
    }
    void build(int o, int l, int r) {
        if (l == r) {
            sumv[o] = maxv[o] = minv[o] = a[l];
            return;
        }
        int mid = (l + r) >> 1;
        build(lson, l, mid); build(rson, mid + 1, r);
        pushup(o);
    }
    void update(int o, int l, int r, int pos, int v) {
        if (l == r) {
            sumv[o] = maxv[o] = minv[o] = v;
            return;
        }
        int mid = (l + r) >> 1;
        pushdown(o, l, r);
        if (pos <= mid) update(lson, l, mid, pos, v);
        else update(rson, mid + 1, r, pos, v);
        pushup(o);
    }
    void neg(int o, int l, int r, int ql, int qr) {
        if (ql > r || qr < l) return;
        if (ql <= l && r <= qr) {
            myswap(o);
            return;
        }
        int mid = (l + r) >> 1;
        pushdown(o, l, r);
        if (ql <= mid) neg(lson, l, mid, ql, qr);
        if (qr > mid) neg(rson, mid + 1, r, ql, qr);
        pushup(o);
    }
    int querysum(int o, int l, int r, int ql, int qr) {
        if (ql > r || qr < l) return 0;
        if (ql <= l && r <= qr) {
            return sumv[o];
        }
        int mid = (l + r) >> 1;
        int ans = 0;
        pushdown(o, l, r);
        if (ql <= mid) ans += querysum(lson, l, mid, ql, qr);
        if (qr > mid) ans += querysum(rson, mid + 1, r, ql, qr);
        return ans;
    }
    int querymax(int o, int l, int r, int ql, int qr) {
        if (ql > r || qr < l) return -inf;
        if (ql <= l && r <= qr) {
            return maxv[o];
        }
        int mid = (l + r) >> 1;
        int ans = -inf;
        pushdown(o, l, r);
        if (ql <= mid) ans = max(ans, querymax(lson, l, mid, ql, qr));
        if (qr > mid) ans = max(ans, querymax(rson, mid + 1, r, ql, qr));
        return ans;
    }
    int querymin(int o, int l, int r, int ql, int qr) {
        if (ql > r || qr < l) return inf;
        if (ql <= l && r <= qr) {
            return minv[o];
        }
        int mid = (l + r) >> 1;
        pushdown(o, l, r);
        int ans = inf;
        if (ql <= mid) ans = min(ans, querymin(lson, l, mid, ql, qr));
        if (qr > mid) ans = min(ans, querymin(rson, mid + 1, r, ql, qr));
        return ans;
    }
    int csum(int u, int v) {
        int ans = 0;
        while (top[u] != top[v]) {
            if (dep[top[u]] < dep[top[v]]) swap(u, v);
            ans += querysum(1, 1, n, pos[top[u]], pos[u]);
            u = fa[top[u]];
        }
        if (dep[u] < dep[v]) swap(u, v);
        ans += querysum(1, 1, n, pos[v] + 1, pos[u]);
        return ans;
    }
    int cmax(int u, int v) {
        int ans = -inf;
        while (top[u] != top[v]) {
            if (dep[top[u]] < dep[top[v]]) swap(u, v);
            ans = max(ans, querymax(1, 1, n, pos[top[u]], pos[u]));
            u = fa[top[u]];
        }
        if (dep[u] < dep[v]) swap(u, v);
        ans = max(ans, querymax(1, 1, n, pos[v] + 1, pos[u]));
        return ans;
    }
    int cmin(int u, int v) {
        int ans = inf;
        while (top[u] != top[v]) {
            if (dep[top[u]] < dep[top[v]]) swap(u, v);
            ans = min(ans, querymin(1, 1, n, pos[top[u]], pos[u]));
            u = fa[top[u]];
        }
        if (dep[u] < dep[v]) swap(u, v);
        ans = min(ans, querymin(1, 1, n, pos[v] + 1, pos[u]));
        return ans;
    }
    void update1(int u, int v) {
        while (top[u] != top[v]) {
            if (dep[top[u]] < dep[top[v]]) swap(u, v);
            neg(1, 1, n, pos[top[u]], pos[u]);
            u = fa[top[u]];
        }
        if (dep[u] < dep[v]) swap(u, v);
        neg(1, 1, n, pos[v] + 1, pos[u]);
    }
    struct edge {
        int u, v;
    } edge[N];
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        scanf("%d", &n);
        val[1] = 0;
        for (int i = 1; i < n; i++) {
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
            u++; v++;
            G[u].push_back(node(v, w));
            G[v].push_back(node(u, w));
            edge[i].u = u;
            edge[i].v = v;
        }
        dep[0] = 0;
        dfs1(1, 0);
        cnt = 0;
        dfs2(1, 0, 1);
        build(1, 1, n);
        int m; scanf("%d", &m);
        char ch[10];
        for (int i = 1; i <= m; i++) {
            scanf("%s", ch);
            int x, y;
            scanf("%d%d", &x, &y);
            if (ch[0] == 'S') {
                x++, y++;
                printf("%d
    ", csum(x, y));
            }
            else if (ch[0] == 'C') {
                int v = dep[edge[x].u] < dep[edge[x].v] ? edge[x].v : edge[x].u;
                update(1, 1, n, pos[v], y);
            }
            else if (ch[0] == 'N') {
                x++; y++;
                update1(x, y);
            }
            else if (ch[1] == 'A') {
                x++; y++;
                printf("%d
    ", cmax(x, y));
            }
            else {
                x++; y++;
                printf("%d
    ", cmin(x, y));
            }
        }
        return 0;
    }
    

    continue

  • 相关阅读:
    关于asp.netCore3.0区域和路由配置
    用Autofac替换.net core 内置容器
    C#Assembly详解
    MongoDB
    Python
    Python,正则表达式
    Python
    Python
    Gevent和猴子补丁
    Django
  • 原文地址:https://www.cnblogs.com/artoriax/p/11294098.html
Copyright © 2020-2023  润新知