• 树状数组初步


    引入

    树状数组用于求区间和,其修改和查询的复杂度都是(O(logn)),非常好写,比较小巧。

    几种基础用法,关于权值树状数组在另一篇博客。

    单点修改,区间查询

    区间和

    HDU-1166 敌兵布阵

    模版:

    #include <bits/stdc++.h>
    #define N 50005
    using namespace std;
    typedef long long ll;
    int max(int a, int b) {
    	return a > b ? a : b;
    }
    int min(int a, int b) {
    	return a < b ? a : b;
    }
    int d[N];
    int n;
    void update(int x, int v) {
    	for (int i = x; i <= n; i += i & (-i))
    		d[i] += v;
    }
    ll query(int x) {
    	ll ans = 0;
    	for (int i = x; i; i -= i & (-i))
    		ans += d[i];
    	return ans;
    }
    int main() {
    	int t;
    	scanf("%d", &t);
    	int cnt = 0;
    	while (t--) {
    		memset(d, 0, sizeof(d));
    		scanf("%d", &n);
    		for (int i = 1; i <= n; i++) {
    			int v;
    			scanf("%d", &v);
    			update(i, v);
    		}
    		cnt++;
    		printf("Case %d:
    ", cnt);
    		while (1) {
    			char ch[10];
    			scanf("%s", ch);
    			int x, y;
    			if (ch[0] == 'Q') {
    				scanf("%d%d", &x, &y);
    				printf("%lld
    ", query(y) - query(x - 1));
    			}
    			else if (ch[0] == 'A') {
    				scanf("%d%d", &x, &y);
    				update(x, y);
    			}
    			else if (ch[0] == 'S') {
    				scanf("%d%d", &x, &y);
    				update(x, -y);
    			}
    			else break;
    		}
    	}
    	return 0;
    }
    

    区间最小值

    不建议使用树状数组求区间最小值,比较难以理解,而且写起来并不简单

    HDU-1754 I Hate It

    模版

    #include <cstdio>
    #include <cstring>
    #define N 200050
    using namespace std;
    int h[N], a[N];
    int lowbit(int x) {
    	return x & (-x);
    }
    int n, m;
    int max(int a, int b) {return a > b ? a : b;}
    void update(int x) {
    	int lx;
    	while (x <= n) {
    		h[x] = a[x];
    		lx = lowbit(x);
    		for (int i = 1; i < lx; i <<= 1)
    			h[x] = max(h[x], h[x - i]);
    		x += lowbit(x);
    	}
    }
    int query(int l, int r) {
    	int ans = 0;
    	while (r >= l) {
    		ans = max(a[r], ans);
    		r--;
    		for (; r - lowbit(r) >= l; r -= lowbit(r))
    			ans = max(h[r], ans);
    	}
    	return ans;
    }
    int main() {
    	while (scanf("%d%d", &n, &m) != EOF) {
    		memset(h, 0, sizeof(h));
    		for (int i = 1; i <= n; i++) {
    			scanf("%d", &a[i]);
    			update(i);
    		}
    		while (m--) {
    			char ch[2];
    			int x, y;
    			scanf("%s%d%d", ch, &x, &y);
    			if (ch[0] == 'Q') {
    				printf("%d
    ", query(x, y));
    			}
    			else {
    				a[x] = y;
    				update(x);
    			}
    		}
    	}
    	return 0;
    }
    

    单点修改,矩阵求和

    直接使用二维树状数组即可。

    附:矩阵前缀和求一部分和的公式:

    (sumv(x2, y2) - sumv(x1 - 1, y2) - sumv(x2, y11 - 1) + sumv(x1 - 1, y11 - 1))

    (sumv(x,y))为从(1,1)到(x,y)的前缀和

    题目:HihoCoder-1336 Matrix Sum

    模版:

    #include <cstdio>
    #include <cstring>
    #define p 1000000007
    #define N 1050
    using namespace std;
    typedef long long ll;
    ll d[N][N];
    int n, m;
    int lowbit(int x) {
    	return x & (-x);
    }
    void update(int x, int y, ll v) {
    	for (int i = x; i <= n; i += lowbit(i)) {
    		for (int j = y; j <= n; j += lowbit(j)) {
    			d[i][j] += v;
    		}
    	}
    }
    ll sumv(int x, int y) {
    	ll ans = 0;
    	for (int i = x; i; i -= lowbit(i)) {
    		for (int j = y; j; j -= lowbit(j)) {
    			ans += d[i][j];
    		}
    	}
    	return ans;
    }
    ll query(int x1, int y11, int x2, int y2) {
    	return sumv(x2, y2) - sumv(x1 - 1, y2) - sumv(x2, y11 - 1) + sumv(x1 - 1, y11 - 1);
    }
    
    int main() {
    	scanf("%d%d", &n, &m);
    	for (int i = 1; i <= m; i++) {
    		char ch[10];
    		scanf("%s", ch);
    		if (ch[0] == 'A') {
    			int x, y; ll v;
    			scanf("%d%d%lld", &x, &y, &v);
    			x++; y++;
    			update(x, y, v);
    		}
    		else {
    			int x1, y11, x2, y2;
    			scanf("%d%d%d%d", &x1, &y11, &x2, &y2);
    			x1++; y11++; x2++; y2++;
    			printf("%lld
    ", (query(x1, y11, x2, y2) + p) % p);
    		}
    	}
    	return 0;
    }
    

    树状数组求逆序对

    使用树状数组维护一个位置之前一共有了多少数,当第i个数a[i]加进来时,先update更新,在询问这个数之前一共有了多少数,使用i-get(a[i])即为对逆序对的贡献,累计即可

    题目:洛谷-P1966 火柴排队

    此题题意是让a数组和b数组之间每个位置均对应为相同的大小顺序,问最少需要移动几次,即把a的位置移动到b的位置需要移动多少次,排序之后将a映射到b求逆序对即可

    模版

    #include<bits/stdc++.h>
    #define maxn 100060
    #define p 99999997
    using namespace std;
    int c[maxn], d[maxn], n;
    inline int getnum(){
    	char c; int ans = 0; bool flag = false;
    	while (!isdigit(c = getchar()) && c != '-');
    	if (c == '-') flag = true; else ans = c - '0';
    	while (isdigit(c = getchar())) ans = ans * 10 + c - '0';
    	return ans * (flag ? -1 : 1);
    }
    struct node{
    	long long v; int pos;
    }a[maxn], b[maxn];
    int cmp(node x, node y){
    	return x.v < y.v;
    }
    inline int lowbit(int x){
    	return x & (-x);
    }
    inline void updata(int x){
    	while (x <= n){
    		d[x]++;
    		x += lowbit(x);
    	}
    }
    inline int getsum(int x){
    	int ans = 0;
    	while (x > 0){
    		ans += d[x] % p;
    		x -= lowbit(x);
    	}
    	return ans;
    }
    int main(){
    	n = getnum();
    	for (int i = 1; i <= n; i++){
    		a[i].v = getnum();
    		a[i].pos = i;
    	}
    	for (int i = 1; i <= n; i++){
    		b[i].v = getnum();
    		b[i].pos = i;
    	}
    	sort(a + 1, a + n + 1, cmp);
    	sort(b + 1, b + n + 1, cmp);
    	for (int i = 1; i <= n; i++){
    		c[b[i].pos] = a[i].pos;
    	}
    	int ans = 0;
    	for (int i = 1; i <= n; i++){
    		updata(c[i]);
    		ans += i - getsum(c[i]);
    		ans %= p;
    	}
    	printf("%d", ans);
    	return 0;
    }
    
    
  • 相关阅读:
    codeforces 1438D,思路非常非常巧妙的构造题
    【Azure DevOps系列】开始第一个Azure DevOps应用
    .NET Core SameSite cookie问题
    解决Caused by: java.lang.IllegalArgumentException: Property 'sqlSessionFactory' or 'sqlSessionTemplate' are required
    feign.FeignException$NotFound: status 404 reading OrdersClient#isBuyCourse(String,String)
    feign.FeignException$NotFound: status 404 reading EduClient#getCourseInfoOrder
    谷粒学院查询全部课程不显示问题
    解决java.sql.SQLException: Zero date value prohibited
    使用Visual Studio Code代码编辑器给vue安装插件,结果导致node_modules里面的安装好的依赖丢失
    Redis报错: Caused by: io.lettuce.core.RedisConnectionException: DENIED Redis is running in protected mode because protected mode is enabled, no bind address was specified, ...
  • 原文地址:https://www.cnblogs.com/artoriax/p/10683440.html
Copyright © 2020-2023  润新知