• UVA-12627 Erratic Expansion


    题目链接

    https://vjudge.net/problem/UVA-12627

    题面

    Description

    Piotr found a magical box in heaven. Its magic power is that if you place any red balloon inside it
    then, after one hour, it will multiply to form 3 red and 1 blue colored balloons. Then in the next hour,
    each of the red balloons will multiply in the same fashion, but the blue one will multiply to form 4 blue
    balloons. This trend will continue indefinitely.
    The arrangements of the balloons after the 0-th, 1-st, 2-nd and 3-rd hour are depicted in the
    following diagram.

    As you can see, a red balloon in the cell (i, j) (that is i-th row and j-th column) will multiply to
    produce 3 red balloons in the cells (i ∗ 2 − 1, j ∗ 2 − 1), (i ∗ 2 − 1, j ∗ 2), (i ∗ 2, j ∗ 2 − 1) and a blue
    balloon in the cell (i ∗ 2, j ∗ 2). Whereas, a blue balloon in the cell (i, j) will multiply to produce 4 blue
    balloons in the cells (i ∗ 2 − 1, j ∗ 2 − 1), (i ∗ 2 − 1, j ∗ 2), (i ∗ 2, j ∗ 2 − 1) and (i ∗ 2, j ∗ 2). The grid size
    doubles (in both the direction) after every hour in order to accommodate the extra balloons.
    In this problem, Piotr is only interested in the count of the red balloons; more specifically, he would
    like to know the total number of red balloons in all the rows from A to B after K-th hour.

    Input

    The first line of input is an integer T (T < 1000) that indicates the number of test cases. Each case
    contains 3 integers K, A and B. The meanings of these variables are mentioned above. K will be in
    the range [0, 30] and 1 ≤ A ≤ B ≤ 2
    K.

    Output

    For each case, output the case number followed by the total number of red balloons in rows [A, B] after
    K-th hour.

    Sample Input

    3
    0 1 1
    3 1 8
    3 3 7
    

    Sample Output

    Case 1: 1
    Case 2: 27
    Case 3: 14
    

    题意

    按题中所给方式进行扩展,问第k次扩展后([A,B])中的红气球数量

    题解

    直接递归处理,首先对于每一次扩展后的气球,很容易发现气球数量为(3^k),先将这个预处理出来,然后递归处理,

    计算从第一列到第B行的红气球数减去第一列到第A-1列的红气球数即为答案,如果要计算的列数大于一半,左半边就可以直接使用预处理出的答案,右边递归处理,不大于一半直接递归即可。

    AC代码

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #define N 50
    using namespace std;
    long long f[N];
    int fpow(int a, int b) {
    	int ans = 1;
    	while (b) {
    		if (b & 1) ans *= a;
    		a *= a;
    		b >>= 1;
    	}
    	return ans;
    }
    long long dfs(int k,int i){
        if(i == 0)
            return 0;
        if(k == 0)
            return 1;
        if(i <= fpow(2, k - 1))
            return 2 * dfs(k - 1, i);
        else
            return 2 * f[k - 1] + dfs(k - 1, i - fpow(2, k - 1));
    }
    int main() {
    	f[0] = 1;
    	for (int i = 1; i <= 30; i++) {
    		f[i] = 3 * f[i - 1];
    	}
    	int t;
    	scanf("%d", &t);
    	int cnt = 0;
    	while (t--) {
    		int k, a, b;
    		cnt++;
    		scanf("%d%d%d", &k, &a, &b);
    		printf("Case %d: %lld
    ", cnt, dfs(k, b) - dfs(k, a - 1));
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    CCF真题之Z字形扫描
    CCF真题之门禁系统
    A
    安装 Spring 框架库
    安装 Apache Commons Logging API步骤
    Manven下载
    669. 修剪二叉搜索树
    UnixLinux | 总结笔记 |文件系统
    561. 数组拆分 I
    620. 有趣的电影
  • 原文地址:https://www.cnblogs.com/artoriax/p/10388468.html
Copyright © 2020-2023  润新知