• 《ARM Trusted Firmware》阅读笔记


    1. 冷启动(Cold boot)流程及阶段划分

    ATF冷启动实现分为5个步骤:

    • BL1 - AP Trusted ROM,一般为BootRom。
    • BL2 - Trusted Boot Firmware,一般为Trusted Bootloader。
    • BL31 - EL3 Runtime Firmware,一般为SML,管理SMC执行处理和中断,运行在secure monitor中。
    • BL32 - Secure-EL1 Payload,一般为TEE OS Image。
    • BL33 - Non-Trusted Firmware,一般为uboot、linux kernel。

    启动流程如下:

    1.1 BL1

    BL1位于ROM中,在EL3下从reset vector处开始运行。

    BL1做的工作主要有:

    • 决定启动路径:冷启动还是热启动。
    • 架构初始化:异常向量、CPU复位处理函数配置、控制寄存器设置(SCRLR_EL3/SCR_EL3/CPTR_EL3/DAIF)
    • 平台初始化:使能Trusted Watchdog、初始化控制台、配置硬件一致性互联、配置MMU、初始化相关存储设备。
    • 固件更新处理
    • BL2镜像加载和执行:
      • BL1输出“Booting Trusted Firmware"。
      • BL1加载BL2到SRAM;如果SRAM不够或者BL2镜像错误,输出“Failed to load BL2 firmware.”。
      • BL1切换到Secure EL1并将执行权交给BL2.

    1.2 BL2

    BL2位于SRAM中,运行在Secure EL1主要工作有:

    • 架构初始化:EL1/EL0使能浮点单元和ASMID。
    • 平台初始化:控制台初始化、相关存储设备初始化、MMU、相关设备安全配置、
    • SCP_BL2:系统控制核镜像加载,单独核处理系统功耗、时钟、复位等控制。
    • 加载BL31镜像:BL2将控制权交给BL1;BL1关闭MMU并关cache;BL1将控制权交给BL31。
    • 加载BL32镜像:BL32运行在安全世界,BL2依赖BL31将控制权交给BL32。SPSR通过Secure-EL1 Payload Dispatcher进行初始化。
    • 加载BL33镜像:BL2依赖BL31将控制权交给BL33。

    1.3 BL31

    BL31位于SRAM中,EL3模式。除了做架构初始化和平台初始化外,还做了如下工作:

    • PSCI服务初始化。
    • BL32镜像初始化,处于Secure EL1模式。
    • 初始化非安全EL2或EL1,跳转到BL33执行。

    2. BL31 ATF(EL3 Firmware)

    参考文档:《SMC CALLING CONVENTION System Software on ARM® Platforms

    SMCCC定义了每个SMC请求功能的ID以及入参和返回值。

    下面逐一介绍运行在EL3固件的运行服务框架的注册、初始化和使用。

    SMCCC定义了每个运行服务框架的SMC功能ID、OEN(Owning Entity Numbers)、Fast和Standard调用、SMC32和SMC64调用转换。

    需要优先实现的功能有:

    • Standard服务调用:
    • Secure-EL1 Payload Dispatcher service:如果存在TOS或者S.EL1 Payload,则需要EL3 Secure Monitor负责切换NS.EL1/2和S.EL1。Secure Monitor和S.EL1 Payload之间接口被称为SPD(S.EL1 Payload Dispatcher)。ATF还提供了TSP(Test S.EL1 Payload)和TSPD。
    • CPU特有服务:提供CPU特有的的功能服务。

    2.1 运行服务注册

    DECLARE_RT_SVC()用于注册一个运行服务,指定服务名称、OEN范围、服务类型(SMC_TYPE_FAST/SMC_TYPE_STD)、初始化和调用函数。

    通过DECLARE_RT_SVC()注册的每个服务都会在ELF的rt_svc_descs段中存在,__RT_SVC_DESCS_START__和__RT_SVC_DESCS_END__是此段的起始结束地址,并可以通过地址范围计算服务数量RT_SVC_DECS_NUM。

    /*
     * Convenience macro to declare a service descriptor
     */
    #define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch) 
        static const rt_svc_desc_t __svc_desc_ ## _name 
            __section("rt_svc_descs") __used = { 
                .start_oen = _start, 
                .end_oen = _end, 
                .call_type = _type, 
                .name = #_name, 
                .init = _setup, 
                .handle = _smch }
    
    typedef struct rt_svc_desc {
        uint8_t start_oen;-------------------service内部启动oen
        uint8_t end_oen;---------------------service内部末尾oen
        uint8_t call_type;-------------------smc类型,是fast call还是standard call
        const char *name;--------------------service名称
        rt_svc_init_t init;------------------service初始化函数
        rt_svc_handle_t handle;--------------对应function id的调用函数
    } rt_svc_desc_t;

    SMC功能ID范围定义如下:

    /*******************************************************************************
     * Owning entity number definitions inside the function id as per the SMC
     * calling convention
     ******************************************************************************/
    #define OEN_ARM_START            0
    #define OEN_ARM_END            0
    #define OEN_CPU_START            1
    #define OEN_CPU_END            1
    #define OEN_SIP_START            2
    #define OEN_SIP_END            2
    #define OEN_OEM_START            3
    #define OEN_OEM_END            3
    #define OEN_STD_START            4    /* Standard Calls */
    #define OEN_STD_END            4
    #define OEN_TAP_START            48    /* Trusted Applications */
    #define OEN_TAP_END            49
    #define OEN_TOS_START            50    /* Trusted OS */
    #define OEN_TOS_END            63
    #define OEN_LIMIT            64

    上面的定义根据如下规格:

    MAX_RT_SVCS为128,是因为OEN有64个SMC类型有Standard和Fast两种类型,所以一共有128种。rt_svc_descs_indices[]一共有128个

    2.2 ATF初始化

    bl31_entrypoint()是冷启动的入口,只会被cpu0执行。

    func bl31_entrypoint
    #if !RESET_TO_BL31
        /* ---------------------------------------------------------------
         * Preceding bootloader has populated x0 with a pointer to a
         * 'bl31_params' structure & x1 with a pointer to platform
         * specific structure
         * ---------------------------------------------------------------
         */
    #if HISILICON
        /* hisilicon use args from uboot,
         * load_fip.c has set value in address 8 and 16
         */
        mov    x0, 8
        mov    x1, 16
        ldr    x20, [x0]
        ldr    x21, [x1]
    #else
        mov    x20, x0
        mov    x21, x1
    #endif
        /* ---------------------------------------------------------------------
         * For !RESET_TO_BL31 systems, only the primary CPU ever reaches
         * bl31_entrypoint() during the cold boot flow, so the cold/warm boot
         * and primary/secondary CPU logic should not be executed in this case.
         *
         * Also, assume that the previous bootloader has already set up the CPU
         * endianness and has initialised the memory.
         * ---------------------------------------------------------------------
         */
        el3_entrypoint_common                    
            _set_endian=0                    
            _warm_boot_mailbox=0                
            _secondary_cold_boot=0                
            _init_memory=0                    
            _init_c_runtime=1                
            _exception_vectors=runtime_exceptions----------------------------runtime_exceptions是ATF的异常向量表。
    
        /* ---------------------------------------------------------------------
         * Relay the previous bootloader's arguments to the platform layer
         * ---------------------------------------------------------------------
         */
        mov    x0, x20
        mov    x1, x21
    #else
        /* ---------------------------------------------------------------------
         * For RESET_TO_BL31 systems which have a programmable reset address,
         * bl31_entrypoint() is executed only on the cold boot path so we can
         * skip the warm boot mailbox mechanism.
         * ---------------------------------------------------------------------
         */
        el3_entrypoint_common                    
            _set_endian=1                    
            _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS    
            _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU    
            _init_memory=1                    
            _init_c_runtime=1                
            _exception_vectors=runtime_exceptions
    
        /* ---------------------------------------------------------------------
         * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
         * there's no argument to relay from a previous bootloader. Zero the
         * arguments passed to the platform layer to reflect that.
         * ---------------------------------------------------------------------
         */
        mov    x0, 0
        mov    x1, 0
    #endif /* RESET_TO_BL31 */
    
        /* ---------------------------------------------
         * Perform platform specific early arch. setup
         * ---------------------------------------------
         */
        bl    bl31_early_platform_setup-------------------------------------初始化UART,以及获取BL32、BL33的entrypoint。
        bl    bl31_plat_arch_setup------------------------------------------MMU内存初始化。
    
        /* ---------------------------------------------
         * Jump to main function.
         * ---------------------------------------------
         */
        bl    bl31_main
        /* -------------------------------------------------------------
         * Clean the .data & .bss sections to main memory. This ensures
         * that any global data which was initialised by the primary CPU
         * is visible to secondary CPUs before they enable their data
         * caches and participate in coherency.
         * -------------------------------------------------------------
         */
        adr    x0, __DATA_START__
        adr    x1, __DATA_END__
        sub    x1, x1, x0
        bl    clean_dcache_range
    
        adr    x0, __BSS_START__
        adr    x1, __BSS_END__
        sub    x1, x1, x0
        bl    clean_dcache_range--------------------------------------------刷data和bss段到内存中。
    
        b    el3_exit
    endfunc bl31_entrypoint

     el3_exit()退出当前ATF执行下一阶段的镜像。

        /* -----------------------------------------------------
         * This routine assumes that the SP_EL3 is pointing to
         * a valid context structure from where the gp regs and
         * other special registers can be retrieved.
         * -----------------------------------------------------
         */
    func el3_exit
        /* -----------------------------------------------------
         * Save the current SP_EL0 i.e. the EL3 runtime stack
         * which will be used for handling the next SMC. Then
         * switch to SP_EL3
         * -----------------------------------------------------
         */
        mov    x17, sp
        msr    spsel, #1
        str    x17, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]
    
        /* -----------------------------------------------------
         * Restore SPSR_EL3, ELR_EL3 and SCR_EL3 prior to ERET
         * -----------------------------------------------------
         */
        ldr    x18, [sp, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3]
        ldp    x16, x17, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]
        msr    scr_el3, x18
        msr    spsr_el3, x16
        msr    elr_el3, x17
    
        /* Restore saved general purpose registers and return */
        b    restore_gp_registers_eret
    endfunc el3_exit

     bl31_main()是ATF主体,初始化好ATF服务、启动optee os,至此可以提供psci、TOS等服务。然后再为进入BL33做好准备工作。

    /*******************************************************************************
     * BL31 is responsible for setting up the runtime services for the primary cpu
     * before passing control to the bootloader or an Operating System. This
     * function calls runtime_svc_init() which initializes all registered runtime
     * services. The run time services would setup enough context for the core to
     * swtich to the next exception level. When this function returns, the core will
     * switch to the programmed exception level via. an ERET.
     ******************************************************************************/
    void bl31_main(void)
    {
        NOTICE("BL31: %s
    ", version_string);
        NOTICE("BL31: %s
    ", build_message);
    
        /* Perform platform setup in BL31 */
        bl31_platform_setup();---------------------------------------------------初始化GIC、Timer、Power等工作。
    
        /* Initialise helper libraries */
        bl31_lib_init();---------------------------------------------------------初始化BL31中相关全局变量。
    
        /* Initialize the runtime services e.g. psci. */
        INFO("BL31: Initializing runtime services
    ");
        runtime_svc_init();------------------------------------------------------初始化EL3 ATF中注册的服务,编译时放在rt_svc_decs特定段中。
    
        /*
         * All the cold boot actions on the primary cpu are done. We now need to
         * decide which is the next image (BL32 or BL33) and how to execute it.
         * If the SPD runtime service is present, it would want to pass control
         * to BL32 first in S-EL1. In that case, SPD would have registered a
         * function to intialize bl32 where it takes responsibility of entering
         * S-EL1 and returning control back to bl31_main. Once this is done we
         * can prepare entry into BL33 as normal.
         */
    
        /*
         * If SPD had registerd an init hook, invoke it.
         */
        if (bl32_init) {
            INFO("BL31: Initializing BL32
    ");
            (*bl32_init)();------------------------------------------------------如果注册了TOS支持,调用对应的init函数初始化TOS。对于optee就是opteed_init()。
        }
        /*
         * We are ready to enter the next EL. Prepare entry into the image
         * corresponding to the desired security state after the next ERET.
         */
        bl31_prepare_next_image_entry();-----------------------------------------准备跳转到BL33,
    
        /*
         * Perform any platform specific runtime setup prior to cold boot exit
         * from BL31
         */
        bl31_plat_runtime_setup();-----------------------------------------------BL31退出前准备工作。
    }

    runtime_svc_init()作为BL31初始化一部分,初始化了运行在主CPU上的运行服务框架。这必须在TOS和普通世界软件启动之前执行,因为安全和非安全软件可能需要使用这部分内容。

    runtime_svc_init()主要对注册的服务进行有限性验证,调用各自服务的初始化函数init(),以及将不同SMC OEN转换到注册服务ID。

    在实际使用中,注册一个服务可能对应一系列SMC调用。

    void runtime_svc_init(void)
    {
        int rc = 0, index, start_idx, end_idx;
    
        /* Assert the number of descriptors detected are less than maximum indices */
        assert((RT_SVC_DESCS_END >= RT_SVC_DESCS_START) &&
                (RT_SVC_DECS_NUM < MAX_RT_SVCS));
    
        /* If no runtime services are implemented then simply bail out */
        if (RT_SVC_DECS_NUM == 0)-----------------------------------------------对注册到ATF的SMC服务数量进行检查。
            return;
    
        /* Initialise internal variables to invalid state */
        memset(rt_svc_descs_indices, -1, sizeof(rt_svc_descs_indices));
    
        rt_svc_descs = (rt_svc_desc_t *) RT_SVC_DESCS_START;
        for (index = 0; index < RT_SVC_DECS_NUM; index++) {----------------------遍历rt_svc_descs段,
            rt_svc_desc_t *service = &rt_svc_descs[index];
    
            rc = validate_rt_svc_desc(service);
            if (rc) {
                ERROR("Invalid runtime service descriptor %p
    ",
                    (void *) service);
                panic();
            }
    
            if (service->init) {
                rc = service->init();--------------------------------------------执行当前service的init函数。
                if (rc) {
                    ERROR("Error initializing runtime service %s
    ",
                            service->name);
                    continue;
                }
            }
    
            start_idx = get_unique_oen(rt_svc_descs[index].start_oen,
                    service->call_type);
            assert(start_idx < MAX_RT_SVCS);
            end_idx = get_unique_oen(rt_svc_descs[index].end_oen,
                    service->call_type);
            assert(end_idx < MAX_RT_SVCS);
            for (; start_idx <= end_idx; start_idx++)----------------------------根据call_type和oen范围,确定rt_svc_descs_indices对应下标,达到SMC function id到注册service id的转换。
                rt_svc_descs_indices[start_idx] = index;
        }
    }

    2.3 处理SMC

    当EL3 Firmware接收到一个SMC时,SMC功能ID通过W0传递到EL3 Firmware。这是根据寄存位宽和W0进行检查,如果两者不匹配则返回错误。

    其中Bit[31]和bits[29:24]共7bit组成一个0~127范围数值,在rt_svc_descs_indices[]所对应具体的软件服务rt_svc_descs[]索引。

    进而调用具体软件服务的handle()函数:

    uintptr_t handle_runtime_svc(uint32_t smc_fid,
                     void *cookie,
                     void *handle,
                     unsigned int flags)
    {
        u_register_t x1, x2, x3, x4;
        int index, idx;
        const rt_svc_desc_t *rt_svc_descs;
    
        assert(handle);
        idx = get_unique_oen_from_smc_fid(smc_fid);
        assert(idx >= 0 && idx < MAX_RT_SVCS);
    
        index = rt_svc_descs_indices[idx];---------------------将从x0寄存器中读取的Standard/Fast和OWN组合的idx,找到Runtime Service的index。
        if (index < 0 || index >= RT_SVC_DECS_NUM)
            SMC_RET1(handle, SMC_UNK);
    
        rt_svc_descs = (rt_svc_desc_t *) RT_SVC_DESCS_START;---Runtime Service起始地址。
    
        get_smc_params_from_ctx(handle, x1, x2, x3, x4);-------获取x1/x2/x3/x4寄存器。
    
        return rt_svc_descs[index].handle(smc_fid, x1, x2, x3, x4, cookie,
                            handle, flags);--------------------调用具体Runtime Service的handle()函数。
    }

    3. PSCI

    参考文档:《POWER STATE COORDINATION INTERFACE (PSCI) System Software on ARM® Systems

    PSCI功能作为Standard service一部分,由std_svc_smc_handler()处理。

    DECLARE_RT_SVC(
            std_svc,
    
            OEN_STD_START,
            OEN_STD_END,
            SMC_TYPE_FAST,
            std_svc_setup,
            std_svc_smc_handler-----------------------------对于Fast类型Standard服务调用,主要是进行PSCI处理。
    );
    
    uintptr_t std_svc_smc_handler(uint32_t smc_fid,
                     u_register_t x1,
                     u_register_t x2,
                     u_register_t x3,
                     u_register_t x4,
                     void *cookie,
                     void *handle,
                     u_register_t flags)
    {
        /*
         * Dispatch PSCI calls to PSCI SMC handler and return its return
         * value
         */
        if (is_psci_fid(smc_fid)) {
            uint64_t ret;
    ...
    
            ret = psci_smc_handler(smc_fid, x1, x2, x3, x4,
                cookie, handle, flags);---------------------首先判断是否是Fast类型,然后交给psci_smc_handler()进行处理。
    ...
            SMC_RET1(handle, ret);
        }
    ...
    }
    
    u_register_t psci_smc_handler(uint32_t smc_fid,
                  u_register_t x1,
                  u_register_t x2,
                  u_register_t x3,
                  u_register_t x4,
                  void *cookie,
                  void *handle,
                  u_register_t flags)
    {
        if (is_caller_secure(flags))
            return SMC_UNK;
    
        /* Check the fid against the capabilities */
        if (!(psci_caps & define_psci_cap(smc_fid)))
            return SMC_UNK;
    
        if (((smc_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_32) {
    ...
        } else {---------------------------------------------这里以64系统为例。
            /* 64-bit PSCI function */
    
            switch (smc_fid) {
            case PSCI_CPU_SUSPEND_AARCH64:
                return psci_cpu_suspend(x1, x2, x3);
    
            case PSCI_CPU_ON_AARCH64:-----------------------PSCI_CPU_ON_AARCH64为0xc4000003,bit[31]=1:Fast Call、bit[30]=1:SMC64、bits[29:24]=000100:Starndard service、bits[15:0]=0000 0011:内部定义序号。
                return psci_cpu_on(x1, x2, x3);
    

              case PSCI_AFFINITY_INFO_AARCH64:
                  return psci_affinity_info(x1, x2);

              case PSCI_MIG_AARCH64:
              return psci_migrate(x1);

              case PSCI_MIG_INFO_UP_CPU_AARCH64:
                  return psci_migrate_info_up_cpu();

              case PSCI_NODE_HW_STATE_AARCH64:
                  return psci_node_hw_state(x1, x2);

              case PSCI_SYSTEM_SUSPEND_AARCH64:
                  return psci_system_suspend(x1, x2);

      #if ENABLE_PSCI_STAT
              case PSCI_STAT_RESIDENCY_AARCH64:
                  return psci_stat_residency(x1, x2);

              case PSCI_STAT_COUNT_AARCH64:
                  return psci_stat_count(x1, x2);
      #endif

            default:
                break;
            }
        }
    
        WARN("Unimplemented PSCI Call: 0x%x 
    ", smc_fid);
        return SMC_UNK;
    }

    3.1 PSCI_VERSION

    unsigned int psci_version(void)
    {
        return PSCI_MAJOR_VER | PSCI_MINOR_VER;
    }
    
    #define PSCI_MAJOR_VER        (1 << 16)
    #define PSCI_MINOR_VER        0x0

    3.2 PSCI_CPU_SUSPEND

    int psci_cpu_suspend(unsigned int power_state,
                 uintptr_t entrypoint,
                 u_register_t context_id)
    {
        int rc;
        unsigned int target_pwrlvl, is_power_down_state;
        entry_point_info_t ep;
        psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
        plat_local_state_t cpu_pd_state;
    
        /* Validate the power_state parameter */
        rc = psci_validate_power_state(power_state, &state_info);
        if (rc != PSCI_E_SUCCESS) {
            assert(rc == PSCI_E_INVALID_PARAMS);
            return rc;
        }
    
        /*
         * Get the value of the state type bit from the power state parameter.
         */
        is_power_down_state = psci_get_pstate_type(power_state);
    
        /* Sanity check the requested suspend levels */
        assert(psci_validate_suspend_req(&state_info, is_power_down_state)
                == PSCI_E_SUCCESS);
    
        target_pwrlvl = psci_find_target_suspend_lvl(&state_info);
        if (target_pwrlvl == PSCI_INVALID_PWR_LVL) {
            ERROR("Invalid target power level for suspend operation
    ");
            panic();
        }
    
        /* Fast path for CPU standby.*/
        if (is_cpu_standby_req(is_power_down_state, target_pwrlvl)) {
            if  (!psci_plat_pm_ops->cpu_standby)
                return PSCI_E_INVALID_PARAMS;
    
            /*
             * Set the state of the CPU power domain to the platform
             * specific retention state and enter the standby state.
             */
            cpu_pd_state = state_info.pwr_domain_state[PSCI_CPU_PWR_LVL];
            psci_set_cpu_local_state(cpu_pd_state);
    
    #if ENABLE_PSCI_STAT
            /*
             * Capture time-stamp before CPU standby
             * No cache maintenance is needed as caches
             * are ON through out the CPU standby operation.
             */
            PMF_CAPTURE_TIMESTAMP(psci_svc, PSCI_STAT_ID_ENTER_LOW_PWR,
                PMF_NO_CACHE_MAINT);
    #endif
    
    #if ENABLE_RUNTIME_INSTRUMENTATION
            PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
                RT_INSTR_ENTER_HW_LOW_PWR,
                PMF_NO_CACHE_MAINT);
    #endif
    
            psci_plat_pm_ops->cpu_standby(cpu_pd_state);
    
            /* Upon exit from standby, set the state back to RUN. */
            psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
    
    #if ENABLE_RUNTIME_INSTRUMENTATION
            PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
                RT_INSTR_EXIT_HW_LOW_PWR,
                PMF_NO_CACHE_MAINT);
    #endif
    
    #if ENABLE_PSCI_STAT
            /* Capture time-stamp after CPU standby */
            PMF_CAPTURE_TIMESTAMP(psci_svc, PSCI_STAT_ID_EXIT_LOW_PWR,
                PMF_NO_CACHE_MAINT);
    
            /* Update PSCI stats */
            psci_stats_update_pwr_up(PSCI_CPU_PWR_LVL, &state_info,
                PMF_NO_CACHE_MAINT);
    #endif
    
            return PSCI_E_SUCCESS;
        }
    
        /*
         * If a power down state has been requested, we need to verify entry
         * point and program entry information.
         */
        if (is_power_down_state) {
            rc = psci_validate_entry_point(&ep, entrypoint, context_id);
            if (rc != PSCI_E_SUCCESS)
                return rc;
        }
    
        /*
         * Do what is needed to enter the power down state. Upon success,
         * enter the final wfi which will power down this CPU. This function
         * might return if the power down was abandoned for any reason, e.g.
         * arrival of an interrupt
         */
        psci_cpu_suspend_start(&ep,
                    target_pwrlvl,
                    &state_info,
                    is_power_down_state);
    
        return PSCI_E_SUCCESS;
    }

    3.3 PSCI_CPU_OFF

    int psci_cpu_off(void)
    {
        int rc;
        unsigned int target_pwrlvl = PLAT_MAX_PWR_LVL;
    
        /*
         * Do what is needed to power off this CPU and possible higher power
         * levels if it able to do so. Upon success, enter the final wfi
         * which will power down this CPU.
         */
        rc = psci_do_cpu_off(target_pwrlvl);
    
        /*
         * The only error cpu_off can return is E_DENIED. So check if that's
         * indeed the case.
         */
        assert(rc == PSCI_E_DENIED);
    
        return rc;
    }

    3.4 PSCI_CPU_ON

    /*******************************************************************************
     * PSCI frontend api for servicing SMCs. Described in the PSCI spec.
     ******************************************************************************/
    int psci_cpu_on(u_register_t target_cpu,
            uintptr_t entrypoint,
            u_register_t context_id)
    
    {
        int rc;
        entry_point_info_t ep;
    
        /* Determine if the cpu exists of not */
        rc = psci_validate_mpidr(target_cpu);
        if (rc != PSCI_E_SUCCESS)
            return PSCI_E_INVALID_PARAMS;
    
        /* Validate the entry point and get the entry_point_info */
        rc = psci_validate_entry_point(&ep, entrypoint, context_id);
        if (rc != PSCI_E_SUCCESS)
            return rc;
    
        /*
         * To turn this cpu on, specify which power
         * levels need to be turned on
         */
        return psci_cpu_on_start(target_cpu, &ep);
    }

    3.5 PSCI_AFFINITY_INFO

    int psci_affinity_info(u_register_t target_affinity,
                   unsigned int lowest_affinity_level)
    {
        unsigned int target_idx;
    
        /* We dont support level higher than PSCI_CPU_PWR_LVL */
        if (lowest_affinity_level > PSCI_CPU_PWR_LVL)
            return PSCI_E_INVALID_PARAMS;
    
        /* Calculate the cpu index of the target */
        target_idx = plat_core_pos_by_mpidr(target_affinity);
        if (target_idx == -1)
            return PSCI_E_INVALID_PARAMS;
    
        return psci_get_aff_info_state_by_idx(target_idx);
    }

    3.6 PSCI_MIG

    int psci_migrate(u_register_t target_cpu)
    {
        int rc;
        u_register_t resident_cpu_mpidr;
    
        rc = psci_spd_migrate_info(&resident_cpu_mpidr);
        if (rc != PSCI_TOS_UP_MIG_CAP)
            return (rc == PSCI_TOS_NOT_UP_MIG_CAP) ?
                  PSCI_E_DENIED : PSCI_E_NOT_SUPPORTED;
    
        /*
         * Migrate should only be invoked on the CPU where
         * the Secure OS is resident.
         */
        if (resident_cpu_mpidr != read_mpidr_el1())
            return PSCI_E_NOT_PRESENT;
    
        /* Check the validity of the specified target cpu */
        rc = psci_validate_mpidr(target_cpu);
        if (rc != PSCI_E_SUCCESS)
            return PSCI_E_INVALID_PARAMS;
    
        assert(psci_spd_pm && psci_spd_pm->svc_migrate);
    
        rc = psci_spd_pm->svc_migrate(read_mpidr_el1(), target_cpu);
        assert(rc == PSCI_E_SUCCESS || rc == PSCI_E_INTERN_FAIL);
    
        return rc;
    }

    3.7 PSCI_MIG_INFO_TYPE

    int psci_migrate_info_type(void)
    {
        u_register_t resident_cpu_mpidr;
    
        return psci_spd_migrate_info(&resident_cpu_mpidr);
    }
    
    /*******************************************************************************
     * This function invokes the migrate info hook in the spd_pm_ops. It performs
     * the necessary return value validation. If the Secure Payload is UP and
     * migrate capable, it returns the mpidr of the CPU on which the Secure payload
     * is resident through the mpidr parameter. Else the value of the parameter on
     * return is undefined.
     ******************************************************************************/
    int psci_spd_migrate_info(u_register_t *mpidr)
    {
        int rc;
    
        if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
            return PSCI_E_NOT_SUPPORTED;
    
        rc = psci_spd_pm->svc_migrate_info(mpidr);
    
        assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP 
            || rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
    
        return rc;
    }

    3.8 PSCI_MIG_INFO_UP_CPU

    long psci_migrate_info_up_cpu(void)
    {
        u_register_t resident_cpu_mpidr;
        int rc;
    
        /*
         * Return value of this depends upon what
         * psci_spd_migrate_info() returns.
         */
        rc = psci_spd_migrate_info(&resident_cpu_mpidr);
        if (rc != PSCI_TOS_NOT_UP_MIG_CAP && rc != PSCI_TOS_UP_MIG_CAP)
            return PSCI_E_INVALID_PARAMS;
    
        return resident_cpu_mpidr;
    }

    3.9 PSCI_SYSTEM_OFF

    void psci_system_off(void)
    {
        psci_print_power_domain_map();
    
        assert(psci_plat_pm_ops->system_off);
    
        /* Notify the Secure Payload Dispatcher */
        if (psci_spd_pm && psci_spd_pm->svc_system_off) {
            psci_spd_pm->svc_system_off();
        }
    
        /* Call the platform specific hook */
        psci_plat_pm_ops->system_off();
    
        /* This function does not return. We should never get here */
    }

    3.10 PSCI_SYSTEM_RESET

    void psci_system_reset(void)
    {
        psci_print_power_domain_map();
    
        assert(psci_plat_pm_ops->system_reset);
    
        /* Notify the Secure Payload Dispatcher */
        if (psci_spd_pm && psci_spd_pm->svc_system_reset) {
            psci_spd_pm->svc_system_reset();
        }
    
        /* Call the platform specific hook */
        psci_plat_pm_ops->system_reset();
    
        /* This function does not return. We should never get here */
    }

    3.11 PSCI_FEATURES

    int psci_features(unsigned int psci_fid)
    {
        unsigned int local_caps = psci_caps;
    
        /* Check if it is a 64 bit function */
        if (((psci_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_64)
            local_caps &= PSCI_CAP_64BIT_MASK;
    
        /* Check for invalid fid */
        if (!(is_std_svc_call(psci_fid) && is_valid_fast_smc(psci_fid)
                && is_psci_fid(psci_fid)))
            return PSCI_E_NOT_SUPPORTED;
    
    
        /* Check if the psci fid is supported or not */
        if (!(local_caps & define_psci_cap(psci_fid)))
            return PSCI_E_NOT_SUPPORTED;
    
        /* Format the feature flags */
        if (psci_fid == PSCI_CPU_SUSPEND_AARCH32 ||
                psci_fid == PSCI_CPU_SUSPEND_AARCH64) {
            /*
             * The trusted firmware does not support OS Initiated Mode.
             */
            return (FF_PSTATE << FF_PSTATE_SHIFT) |
                ((!FF_SUPPORTS_OS_INIT_MODE) << FF_MODE_SUPPORT_SHIFT);
        }
    
        /* Return 0 for all other fid's */
        return PSCI_E_SUCCESS;
    }

    3.12 PSCI_SYSTEM_SUSPEND

    int psci_system_suspend(uintptr_t entrypoint, u_register_t context_id)
    {
        int rc;
        psci_power_state_t state_info;
        entry_point_info_t ep;
    
        /* Check if the current CPU is the last ON CPU in the system */
        if (!psci_is_last_on_cpu())
            return PSCI_E_DENIED;
    
        /* Validate the entry point and get the entry_point_info */
        rc = psci_validate_entry_point(&ep, entrypoint, context_id);
        if (rc != PSCI_E_SUCCESS)
            return rc;
    
        /* Query the psci_power_state for system suspend */
        psci_query_sys_suspend_pwrstate(&state_info);
    
        /* Ensure that the psci_power_state makes sense */
        assert(psci_find_target_suspend_lvl(&state_info) == PLAT_MAX_PWR_LVL);
        assert(psci_validate_suspend_req(&state_info, PSTATE_TYPE_POWERDOWN)
                            == PSCI_E_SUCCESS);
        assert(is_local_state_off(state_info.pwr_domain_state[PLAT_MAX_PWR_LVL]));
    
        /*
         * Do what is needed to enter the system suspend state. This function
         * might return if the power down was abandoned for any reason, e.g.
         * arrival of an interrupt
         */
        psci_cpu_suspend_start(&ep,
                    PLAT_MAX_PWR_LVL,
                    &state_info,
                    PSTATE_TYPE_POWERDOWN);
    
        return PSCI_E_SUCCESS;
    }

    4. OPTEE

    optee注册了Fast和Standard两种调用类型,Fast类型需要使用opteed_setup()进行初始化。两种类型共用opteed_smc_handler()进行smc处理。

    /* Define an OPTEED runtime service descriptor for fast SMC calls */
    DECLARE_RT_SVC(
        opteed_fast,
    
        OEN_TOS_START,
        OEN_TOS_END,
        SMC_TYPE_FAST,
        opteed_setup,
        opteed_smc_handler
    );
    
    /* Define an OPTEED runtime service descriptor for standard SMC calls */
    DECLARE_RT_SVC(
        opteed_std,
    
        OEN_TOS_START,
        OEN_TOS_END,
        SMC_TYPE_STD,
        NULL,
        opteed_smc_handler
    );

    4.1 optee启动

    在ATF启动过程中,runtime_svc_init()会调用opteed_setup()来完成optee的启动。

    /*******************************************************************************
     * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
     * (aarch32/aarch64) if not already known and initialises the context for entry
     * into OPTEE for its initialization.
     ******************************************************************************/
    int32_t opteed_setup(void)
    {
        entry_point_info_t *optee_ep_info;
        uint32_t linear_id;
    
        linear_id = plat_my_core_pos();
    
        optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);-----------------获取BL32即optee os镜像信息。
        if (!optee_ep_info) {
            WARN("No OPTEE provided by BL2 boot loader, Booting device"
                " without OPTEE initialization. SMC`s destined for OPTEE"
                " will return SMC_UNK
    ");
            return 1;
        }
    
        if (!optee_ep_info->pc)
            return 1;
    
        /*
         * We could inspect the SP image and determine it's execution
         * state i.e whether AArch32 or AArch64. Assuming it's AArch32
         * for the time being.
         */
        opteed_rw = OPTEE_AARCH64;
        opteed_init_optee_ep_state(optee_ep_info,
                    opteed_rw,
                    optee_ep_info->pc,
                    &opteed_sp_context[linear_id]);------------------------------初始化安全CPU的smc上下文,存放于opteed_sp_context[]中。
    
        /*
         * All OPTEED initialization done. Now register our init function with
         * BL31 for deferred invocation
         */
        bl31_register_bl32_init(&opteed_init);-----------------------------------bl32_init指向opteed_init(),在bl31_main()中被调用。
    
        return 0;
    }

    opteed_init()从镜像中获取optee os的入口点,并初始化好ATF和optee切换的上下文,然后进入optee并等待返回结果。

    /*******************************************************************************
     * This function passes control to the OPTEE image (BL32) for the first time
     * on the primary cpu after a cold boot. It assumes that a valid secure
     * context has already been created by opteed_setup() which can be directly
     * used.  It also assumes that a valid non-secure context has been
     * initialised by PSCI so it does not need to save and restore any
     * non-secure state. This function performs a synchronous entry into
     * OPTEE. OPTEE passes control back to this routine through a SMC.
     ******************************************************************************/
    static int32_t opteed_init(void)
    {
        uint32_t linear_id = plat_my_core_pos();
        optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
        entry_point_info_t *optee_entry_point;
        uint64_t rc;
    
        /*
         * Get information about the OPTEE (BL32) image. Its
         * absence is a critical failure.
         */
        optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);-----------------------------获取optee os镜像信息。
        assert(optee_entry_point);
    
        cm_init_my_context(optee_entry_point);----------------------------------------------------设置当前CPU进入安全状态的上下文。
    
        /*
         * Arrange for an entry into OPTEE. It will be returned via
         * OPTEE_ENTRY_DONE case
         */
        rc = opteed_synchronous_sp_entry(optee_ctx);----------------------------------------------启动optee os,并等待OPTEE_ENTRY_DONE返回结果。
        assert(rc != 0);
    
        return rc;
    }
    
    /*******************************************************************************
     * This function takes an OPTEE context pointer and:
     * 1. Applies the S-EL1 system register context from optee_ctx->cpu_ctx.
     * 2. Saves the current C runtime state (callee saved registers) on the stack
     *    frame and saves a reference to this state.
     * 3. Calls el3_exit() so that the EL3 system and general purpose registers
     *    from the optee_ctx->cpu_ctx are used to enter the OPTEE image.
     ******************************************************************************/
    uint64_t opteed_synchronous_sp_entry(optee_context_t *optee_ctx)
    {
        uint64_t rc;
    
        assert(optee_ctx != NULL);
        assert(optee_ctx->c_rt_ctx == 0);
    
        /* Apply the Secure EL1 system register context and switch to it */
        assert(cm_get_context(SECURE) == &optee_ctx->cpu_ctx);
        cm_el1_sysregs_context_restore(SECURE);---------------从optee_ctx->cpu_ctx中恢复S.EL1相关寄存器。
        cm_set_next_eret_context(SECURE);---------------------保存从S.EL1返回需要的上下文。
    
        rc = opteed_enter_sp(&optee_ctx->c_rt_ctx);-----------将安全CPU保存的状态恢复到optee_ctx->c_rt_ctx中,并跳转到opteed os执行。
    #if DEBUG
        optee_ctx->c_rt_ctx = 0;
    #endif
    
        return rc;
    }
    func opteed_enter_sp
    /* Make space for the registers that we're going to save */ mov x3, sp str x3, [x0, #0] sub sp, sp, #OPTEED_C_RT_CTX_SIZE /* Save callee-saved registers on to the stack */ stp x19, x20, [sp, #OPTEED_C_RT_CTX_X19] stp x21, x22, [sp, #OPTEED_C_RT_CTX_X21] stp x23, x24, [sp, #OPTEED_C_RT_CTX_X23] stp x25, x26, [sp, #OPTEED_C_RT_CTX_X25] stp x27, x28, [sp, #OPTEED_C_RT_CTX_X27] stp x29, x30, [sp, #OPTEED_C_RT_CTX_X29] /* --------------------------------------------- * Everything is setup now. el3_exit() will * use the secure context to restore to the * general purpose and EL3 system registers to * ERET into OPTEE. * --------------------------------------------- */ b el3_exit--------------------------------------------------使用配置好的安全上下文,退出EL3进入OPTEE。 endfunc opteed_enter_sp

    4.2 optee的SPD

    5 BL1

    BL1镜像的异常向量表初始化了两个:一个是入口bl1_entrypoint,EL1镜像正常执行流程;另一个是SMC调用接口,EL2执行结束会通过SMC返回执行BL31。

    vector_base bl1_vector_table
        b    bl1_entrypoint
        b    report_exception    /* Undef */
        b    bl1_aarch32_smc_handler    /* SMC call */
        b    report_exception    /* Prefetch abort */
        b    report_exception    /* Data abort */
        b    report_exception    /* Reserved */
        b    report_exception    /* IRQ */
        b    report_exception    /* FIQ */
    
    func bl1_aarch32_smc_handler
        /* ------------------------------------------------
         * SMC in BL1 is handled assuming that the MMU is
         * turned off by BL2.
         * ------------------------------------------------
         */
    
        /* ----------------------------------------------
         * Only RUN_IMAGE SMC is supported.
         * ----------------------------------------------
         */
        mov    r8, #BL1_SMC_RUN_IMAGE--------------------------仅支持BL1_SMC_RUN_IMAGE SMC调用;其他调用触发report_exception。
        cmp    r8, r0
        blne    report_exception
    
        /* ------------------------------------------------
         * Make sure only Secure world reaches here.
         * ------------------------------------------------
         */
        ldcopr  r8, SCR
        tst    r8, #SCR_NS_BIT---------------------------------如果处于非安全状态,则触发report_exception。
        blne    report_exception
    
        /* ---------------------------------------------------------------------
         * Pass control to next secure image.
         * Here it expects r1 to contain the address of a entry_point_info_t
         * structure describing the BL entrypoint.
         * ---------------------------------------------------------------------
         */
        mov    r8, r1------------------------------------------第一个参数r0是功能id,即BL1_SMC_RUN_IMAGE_SMC。第二个参数是entry_point_info_t变量。
        mov    r0, r1
        bl    bl1_print_next_bl_ep_info
    
    #if SPIN_ON_BL1_EXIT
        bl    print_debug_loop_message
    debug_loop:
        b    debug_loop
    #endif
    
        mov    r0, r8
        bl    bl1_plat_prepare_exit
    
        stcopr    r0, TLBIALL
        dsb    sy
        isb
    
        /*
         * Extract PC and SPSR based on struct `entry_point_info_t`
         * and load it in LR and SPSR registers respectively.
         */
        ldr    lr, [r8, #ENTRY_POINT_INFO_PC_OFFSET]
        ldr    r1, [r8, #(ENTRY_POINT_INFO_PC_OFFSET + 4)]
        msr    spsr, r1
    
        add    r8, r8, #ENTRY_POINT_INFO_ARGS_OFFSET
        ldm    r8, {r0, r1, r2, r3}----------------------------执行跳转到BL31。
        eret
    endfunc bl1_aarch32_smc_handler

    bl1_entrypoint()进行EL3执行环境初始化,设定向量表,加载bl2镜像并跳转到BL2执行。

    func bl1_entrypoint
        /* ---------------------------------------------------------------------
         * If the reset address is programmable then bl1_entrypoint() is
         * executed only on the cold boot path. Therefore, we can skip the warm
         * boot mailbox mechanism.
         * ---------------------------------------------------------------------
         */
        el3_entrypoint_common                    
            _set_endian=1                    ----------------------是否设定大小端。
            _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS    -----是否检查当前属于冷启动还是热启动。
            _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU    ---------确定当前CPU是主CPU还是从CPU。
            _init_memory=1                    ---------------------是否初始化memory。
            _init_c_runtime=1                ----------------------是否初始化C语言执行环境。
            _exception_vectors=bl1_exceptions-----------------------异常向量表。
    
        /* ---------------------------------------------
         * Architectural init. can be generic e.g.
         * enabling stack alignment and platform spec-
         * ific e.g. MMU & page table setup as per the
         * platform memory map. Perform the latter here
         * and the former in bl1_main.
         * ---------------------------------------------
         */
        bl    bl1_early_platform_setup-------------------初始化memory、page table,所需外围设备初始化等。
        bl    bl1_plat_arch_setup
    
        /* --------------------------------------------------
         * Initialize platform and jump to our c-entry point
         * for this type of reset.
         * --------------------------------------------------
         */
        bl    bl1_main--------------------------------------------------    /* --------------------------------------------------
         * Do the transition to next boot image.
         * --------------------------------------------------
         */
        b    el3_exit
    endfunc bl1_entrypoint

    el3_entrypoint_common()主要完成进入EL3基本设置和向量表注册。

        .macro el3_entrypoint_common                    
            _set_endian, _warm_boot_mailbox, _secondary_cold_boot,    
            _init_memory, _init_c_runtime, _exception_vectors
    
        .if \_set_endian-------------------------------------------------------在进行内存读写之前,设置好系统的大小端。
            /* -------------------------------------------------------------
             * Set the CPU endianness before doing anything that might
             * involve memory reads or writes.
             * -------------------------------------------------------------
             */
            mrs    x0, sctlr_el3
            bic    x0, x0, #SCTLR_EE_BIT
            msr    sctlr_el3, x0
            isb
        .endif /* _set_endian */
    
        .if \_warm_boot_mailbox------------------------------------------------根据当前平台的entrypoint判断是冷启动还是热启动。
            /* -------------------------------------------------------------
             * This code will be executed for both warm and cold resets.
             * Now is the time to distinguish between the two.
             * Query the platform entrypoint address and if it is not zero
             * then it means it is a warm boot so jump to this address.
             * -------------------------------------------------------------
             */
            bl    plat_get_my_entrypoint
            cbz    x0, do_cold_boot--------------------------------------------如果为0说明是冷启动,执行do_cold_boot();非0则跳转到entrypoint执行。
            br    x0
    
        do_cold_boot:
        .endif /* _warm_boot_mailbox */
    
        /* ---------------------------------------------------------------------
         * It is a cold boot.
         * Perform any processor specific actions upon reset e.g. cache, TLB
         * invalidations etc.
         * ---------------------------------------------------------------------
         */
        bl    reset_handler---------------------------------------------------执行reset_handler()。
    
        el3_arch_init_common \_exception_vectors------------------------------初始化异常向量。
    
        .if \_secondary_cold_boot---------------------------------------------判断当前CPU是主CPU还是从CPU。
            /* -------------------------------------------------------------
             * Check if this is a primary or secondary CPU cold boot.
             * The primary CPU will set up the platform while the
             * secondaries are placed in a platform-specific state until the
             * primary CPU performs the necessary actions to bring them out
             * of that state and allows entry into the OS.
             * -------------------------------------------------------------
             */
            bl    plat_is_my_cpu_primary
            cbnz    w0, do_primary_cold_boot
    
            /* This is a cold boot on a secondary CPU */
            bl    plat_secondary_cold_boot_setup
            /* plat_secondary_cold_boot_setup() is not supposed to return */
            bl    el3_panic
    
        do_primary_cold_boot:
        .endif /* _secondary_cold_boot */
    
        /* ---------------------------------------------------------------------
         * Initialize memory now. Secondary CPU initialization won't get to this
         * point.
         * ---------------------------------------------------------------------
         */
    
        .if \_init_memory----------------------------------------------------初始化内存。
            bl    platform_mem_init
        .endif /* _init_memory */
    
        /* ---------------------------------------------------------------------
         * Init C runtime environment:
         *   - Zero-initialise the NOBITS sections. There are 2 of them:
         *       - the .bss section;
         *       - the coherent memory section (if any).
         *   - Relocate the data section from ROM to RAM, if required.
         * ---------------------------------------------------------------------
         */
        .if \_init_c_runtime-------------------------------------------------初始化C执行环境。
    #if IMAGE_BL31
            /* -------------------------------------------------------------
             * Invalidate the RW memory used by the BL31 image. This
             * includes the data and NOBITS sections. This is done to
             * safeguard against possible corruption of this memory by
             * dirty cache lines in a system cache as a result of use by
             * an earlier boot loader stage.
             * -------------------------------------------------------------
             */
            adr    x0, __RW_START__
            adr    x1, __RW_END__
            sub    x1, x1, x0
            bl    inv_dcache_range
    #endif /* IMAGE_BL31 */
    
            ldr    x0, =__BSS_START__
            ldr    x1, =__BSS_SIZE__
            bl    zeromem16
    
    #if USE_COHERENT_MEM
            ldr    x0, =__COHERENT_RAM_START__
            ldr    x1, =__COHERENT_RAM_UNALIGNED_SIZE__
            bl    zeromem16
    #endif
    
    #if IMAGE_BL1
            ldr    x0, =__DATA_RAM_START__
            ldr    x1, =__DATA_ROM_START__
            ldr    x2, =__DATA_SIZE__
            bl    memcpy16
    #endif
        .endif /* _init_c_runtime */
    
        /* ---------------------------------------------------------------------
         * Use SP_EL0 for the C runtime stack.
         * ---------------------------------------------------------------------
         */
        msr    spsel, #0
    
        /* ---------------------------------------------------------------------
         * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
         * the MMU is enabled. There is no risk of reading stale stack memory
         * after enabling the MMU as only the primary CPU is running at the
         * moment.
         * ---------------------------------------------------------------------
         */
        bl    plat_set_my_stack
        .endm

    bl1_main()完成架构和平台特有初始化操作,然后加载BL2镜像并跳转执行。

    /*******************************************************************************
     * Function to perform late architectural and platform specific initialization.
     * It also queries the platform to load and run next BL image. Only called
     * by the primary cpu after a cold boot.
     ******************************************************************************/
    void bl1_main(void)
    {
        unsigned int image_id;
    
        /* Announce our arrival */
        NOTICE(FIRMWARE_WELCOME_STR);
        NOTICE("BL1: %s
    ", version_string);
        NOTICE("BL1: %s
    ", build_message);
    
        INFO("BL1: RAM %p - %p
    ", (void *)BL1_RAM_BASE,
                        (void *)BL1_RAM_LIMIT);
    ...
        /* Perform remaining generic architectural setup from EL3 */
        bl1_arch_setup();
    
    #if TRUSTED_BOARD_BOOT
        /* Initialize authentication module */
        auth_mod_init();---------------------------------------------初始化安全模块和镜像解析模块。
    #endif /* TRUSTED_BOARD_BOOT */
    
        /* Perform platform setup in BL1. */
        bl1_platform_setup();
    
        /* Get the image id of next image to load and run. */
        image_id = bl1_plat_get_next_image_id();----------------------获取下一级启动镜像的ID。
    
        /*
         * We currently interpret any image id other than
         * BL2_IMAGE_ID as the start of firmware update.
         */
        if (image_id == BL2_IMAGE_ID)
            bl1_load_bl2();------------------------------------------将BL2镜像加载到TSRAM中。
        else
            NOTICE("BL1-FWU: *******FWU Process Started*******
    ");
    
        bl1_prepare_next_image(image_id);----------------------------获取image_id对应镜像描述信息,并为进入下一级镜像执行准备好上下文。
    }
    
    /*******************************************************************************
     * This function locates and loads the BL2 raw binary image in the trusted SRAM.
     * Called by the primary cpu after a cold boot.
     * TODO: Add support for alternative image load mechanism e.g using virtio/elf
     * loader etc.
     ******************************************************************************/
    void bl1_load_bl2(void)
    {
        image_desc_t *image_desc;
        image_info_t *image_info;
        entry_point_info_t *ep_info;
        meminfo_t *bl1_tzram_layout;
        meminfo_t *bl2_tzram_layout;
        int err;
    
        /* Get the image descriptor */
        image_desc = bl1_plat_get_image_desc(BL2_IMAGE_ID);
        assert(image_desc);
    
        /* Get the image info */
        image_info = &image_desc->image_info;
    
        /* Get the entry point info */
        ep_info = &image_desc->ep_info;
    
        /* Find out how much free trusted ram remains after BL1 load */
        bl1_tzram_layout = bl1_plat_sec_mem_layout();
    
        INFO("BL1: Loading BL2
    ");
    
    #if LOAD_IMAGE_V2
        err = load_auth_image(BL2_IMAGE_ID, image_info);
    #else
        /* Load the BL2 image */
        err = load_auth_image(bl1_tzram_layout,
                 BL2_IMAGE_ID,
                 image_info->image_base,
                 image_info,
                 ep_info);
    
    #endif /* LOAD_IMAGE_V2 */
    
        if (err) {
            ERROR("Failed to load BL2 firmware.
    ");
            plat_error_handler(err);
        }
    
        /*
         * Create a new layout of memory for BL2 as seen by BL1 i.e.
         * tell it the amount of total and free memory available.
         * This layout is created at the first free address visible
         * to BL2. BL2 will read the memory layout before using its
         * memory for other purposes.
         */
    #if LOAD_IMAGE_V2
        bl2_tzram_layout = (meminfo_t *) bl1_tzram_layout->total_base;
    #else
        bl2_tzram_layout = (meminfo_t *) bl1_tzram_layout->free_base;
    #endif /* LOAD_IMAGE_V2 */
    
        bl1_init_bl2_mem_layout(bl1_tzram_layout, bl2_tzram_layout);
    
        ep_info->args.arg1 = (uintptr_t)bl2_tzram_layout;
        NOTICE("BL1: Booting BL2
    ");
        VERBOSE("BL1: BL2 memory layout address = %p
    ",
            (void *) bl2_tzram_layout);
    }
    
    /*******************************************************************************
     * This function prepares the context for Secure/Normal world images.
     * Normal world images are transitioned to EL2(if supported) else EL1.
     ******************************************************************************/
    void bl1_prepare_next_image(unsigned int image_id)
    {
        unsigned int security_state;
        image_desc_t *image_desc;
        entry_point_info_t *next_bl_ep;
    
    #if CTX_INCLUDE_AARCH32_REGS
        /*
         * Ensure that the build flag to save AArch32 system registers in CPU
         * context is not set for AArch64-only platforms.
         */
        if (((read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL1_SHIFT)
                & ID_AA64PFR0_ELX_MASK) == 0x1) {
            ERROR("EL1 supports AArch64-only. Please set build flag "
                    "CTX_INCLUDE_AARCH32_REGS = 0");
            panic();
        }
    #endif
    
        /* Get the image descriptor. */
        image_desc = bl1_plat_get_image_desc(image_id);---------------获取镜像描述信息,包括入口地址、名字等等。
        assert(image_desc);
    
        /* Get the entry point info. */
        next_bl_ep = &image_desc->ep_info;
    
        /* Get the image security state. */
        security_state = GET_SECURITY_STATE(next_bl_ep->h.attr);------镜像是属于安全还是非安全镜像。
    
        /* Setup the Secure/Non-Secure context if not done already. */
        if (!cm_get_context(security_state))
            cm_set_context(&bl1_cpu_context[security_state], security_state);
    
        /* Prepare the SPSR for the next BL image. */
        if (security_state == SECURE) {-------------------------------设置镜像运行的SPSR数据。
            next_bl_ep->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
                       DISABLE_ALL_EXCEPTIONS);
        } else {
            /* Use EL2 if supported else use EL1. */
            if (read_id_aa64pfr0_el1() &
                (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
                next_bl_ep->spsr = SPSR_64(MODE_EL2, MODE_SP_ELX,
                    DISABLE_ALL_EXCEPTIONS);
            } else {
                next_bl_ep->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
                   DISABLE_ALL_EXCEPTIONS);
            }
        }
    
        /* Allow platform to make change */
        bl1_plat_set_ep_info(image_id, next_bl_ep);
    
        /* Prepare the context for the next BL image. */
        cm_init_my_context(next_bl_ep);
        cm_prepare_el3_exit(security_state);--------------------------为运行下一个镜像,EL3做好准备。
    
        /* Indicate that image is in execution state. */
        image_desc->state = IMAGE_STATE_EXECUTED;
    
        print_entry_point_info(next_bl_ep);---------------------------打印下一级进行相关信息。下面即将el3_exit,退出EL3进入新的进项运行。
    }

    6 BL2

    BL2的主要工作就是加载BL3x系列镜像,然后跳转到BL31运行。

    bl2_entrypoint()是BL2的入口,前半部分主要进行一系列初始化工作,然后通过bl2_main()加载BL3x镜像到RAM中,最后通过SMC调用执行BL1中指定的smc handler将CPU执行权交给BL31。

    func bl2_entrypoint
        /*---------------------------------------------
         * Save from x1 the extents of the tzram
         * available to BL2 for future use.
         * x0 is not currently used.
         * ---------------------------------------------
         */
        mov    x20, x1
    
        /* ---------------------------------------------
         * Set the exception vector to something sane.
         * ---------------------------------------------
         */
        adr    x0, early_exceptions
        msr    vbar_el1, x0-------------------------------------设定异常向量。
        isb
    
        /* ---------------------------------------------
         * Enable the SError interrupt now that the
         * exception vectors have been setup.
         * ---------------------------------------------
         */
        msr    daifclr, #DAIF_ABT_BIT
    
        /* ---------------------------------------------
         * Enable the instruction cache, stack pointer
         * and data access alignment checks
         * ---------------------------------------------
         */
        mov    x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
        mrs    x0, sctlr_el1
        orr    x0, x0, x1
        msr    sctlr_el1, x0----------------------------------配置cache、内存对齐等属性。
        isb
    
        /* ---------------------------------------------
         * Invalidate the RW memory used by the BL2
         * image. This includes the data and NOBITS
         * sections. This is done to safeguard against
         * possible corruption of this memory by dirty
         * cache lines in a system cache as a result of
         * use by an earlier boot loader stage.
         * ---------------------------------------------
         */
        adr    x0, __RW_START__
        adr    x1, __RW_END__
        sub    x1, x1, x0
        bl    inv_dcache_range-------------------------------将BL2的__RW_START__和__RW_END__之间的内存刷回DDR中。
    
        /* ---------------------------------------------
         * Zero out NOBITS sections. There are 2 of them:
         *   - the .bss section;
         *   - the coherent memory section.
         * ---------------------------------------------
         */
        ldr    x0, =__BSS_START__
        ldr    x1, =__BSS_SIZE__
        bl    zeromem16--------------------------------------初始化__BSS_START__开始,大小为__BSS_SIZE__内存为0。
    
    #if USE_COHERENT_MEM
        ldr    x0, =__COHERENT_RAM_START__
        ldr    x1, =__COHERENT_RAM_UNALIGNED_SIZE__
        bl    zeromem16
    #endif
    
        /* --------------------------------------------
         * Allocate a stack whose memory will be marked
         * as Normal-IS-WBWA when the MMU is enabled.
         * There is no risk of reading stale stack
         * memory after enabling the MMU as only the
         * primary cpu is running at the moment.
         * --------------------------------------------
         */
        bl    plat_set_my_stack
    
        /* ---------------------------------------------
         * Perform early platform setup & platform
         * specific early arch. setup e.g. mmu setup
         * ---------------------------------------------
         */
        mov    x0, x20
        bl    bl2_early_platform_setup
        bl    bl2_plat_arch_setup
    
        /* ---------------------------------------------
         * Jump to main function.
         * ---------------------------------------------
         */
        bl    bl2_main------------------------------------跳转到BL2主函数执行,该函数加载BL3x镜像,并通过SMC调用BL1指定SMC函数将CPU执行权交给BL31。
    
        /* ---------------------------------------------
         * Should never reach this point.
         * ---------------------------------------------
         */
        no_ret    plat_panic_handler
    
    endfunc bl2_entrypoint

    bl2_main()主要加载BL3x镜像并验证,然后获取下一个要运行的镜像信息,通过SMC调用让BL1去启动。

    /*******************************************************************************
     * The only thing to do in BL2 is to load further images and pass control to
     * next BL. The memory occupied by BL2 will be reclaimed by BL3x stages. BL2
     * runs entirely in S-EL1.
     ******************************************************************************/
    void bl2_main(void)
    {
        entry_point_info_t *next_bl_ep_info;
    
        NOTICE("BL2: %s
    ", version_string);
        NOTICE("BL2: %s
    ", build_message);
    
        /* Perform remaining generic architectural setup in S-EL1 */
        bl2_arch_setup();
    
    #if TRUSTED_BOARD_BOOT
        /* Initialize authentication module */
        auth_mod_init();
    #endif /* TRUSTED_BOARD_BOOT */
    
        /* Load the subsequent bootloader images. */
        next_bl_ep_info = bl2_load_images();
    
    #ifdef AARCH32
        /*
         * For AArch32 state BL1 and BL2 share the MMU setup.
         * Given that BL2 does not map BL1 regions, MMU needs
         * to be disabled in order to go back to BL1.
         */
        disable_mmu_icache_secure();
    #endif /* AARCH32 */
    
        /*
         * Run next BL image via an SMC to BL1. Information on how to pass
         * control to the BL32 (if present) and BL33 software images will
         * be passed to next BL image as an argument.
         */
        smc(BL1_SMC_RUN_IMAGE, (unsigned long)next_bl_ep_info, 0, 0, 0, 0, 0, 0);----------发起SMC异常启动BL31镜像,交给BL1 bl1_aarch32_smc_handler处理。
    }

    bl2_mem_params_descs定义了BL2需要加载镜像的信息,通过REGISTER_BL_IMAGE_DESCS()将其和bl_mem_params_desc_ptr关联,并获取需要加载镜像数目bl_mem_params_desc_num。

    #define REGISTER_BL_IMAGE_DESCS(_img_desc)                
        bl_mem_params_node_t *bl_mem_params_desc_ptr = &_img_desc[0];    
        unsigned int bl_mem_params_desc_num = ARRAY_SIZE(_img_desc);
    
    static bl_mem_params_node_t bl2_mem_params_descs[] = {
    ...
    #ifdef EL3_PAYLOAD_BASE
    ...
    #else /* EL3_PAYLOAD_BASE */
    
        /* Fill BL31 related information */
        {
            .image_id = BL31_IMAGE_ID,
    
            SET_STATIC_PARAM_HEAD(ep_info, PARAM_EP,
                VERSION_2, entry_point_info_t,
                SECURE | EXECUTABLE | EP_FIRST_EXE),
            .ep_info.pc = BL31_BASE,
            .ep_info.spsr = SPSR_64(MODE_EL3, MODE_SP_ELX,
                DISABLE_ALL_EXCEPTIONS),
    #if DEBUG
            .ep_info.args.arg1 = ARM_BL31_PLAT_PARAM_VAL,
    #endif
    
            SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
                VERSION_2, image_info_t, IMAGE_ATTRIB_PLAT_SETUP),
            .image_info.image_base = BL31_BASE,
            .image_info.image_max_size = BL31_LIMIT - BL31_BASE,
    
    # ifdef BL32_BASE
            .next_handoff_image_id = BL32_IMAGE_ID,
    # else
            .next_handoff_image_id = BL33_IMAGE_ID,
    # endif
        },
    
    # ifdef BL32_BASE
        /* Fill BL32 related information */
        {
            .image_id = BL32_IMAGE_ID,
    
            SET_STATIC_PARAM_HEAD(ep_info, PARAM_EP,
                VERSION_2, entry_point_info_t, SECURE | EXECUTABLE),
            .ep_info.pc = BL32_BASE,
    
            SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
                VERSION_2, image_info_t, 0),
            .image_info.image_base = BL32_BASE,
            .image_info.image_max_size = BL32_LIMIT - BL32_BASE,
    
            .next_handoff_image_id = BL33_IMAGE_ID,
        },
    # endif /* BL32_BASE */
    
        /* Fill BL33 related information */
        {
            .image_id = BL33_IMAGE_ID,
            SET_STATIC_PARAM_HEAD(ep_info, PARAM_EP,
                VERSION_2, entry_point_info_t, NON_SECURE | EXECUTABLE),
    # ifdef PRELOADED_BL33_BASE
            .ep_info.pc = PRELOADED_BL33_BASE,
    
            SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
                VERSION_2, image_info_t, IMAGE_ATTRIB_SKIP_LOADING),
    # else
            .ep_info.pc = PLAT_ARM_NS_IMAGE_OFFSET,
    
            SET_STATIC_PARAM_HEAD(image_info, PARAM_EP,
                VERSION_2, image_info_t, 0),
            .image_info.image_base = PLAT_ARM_NS_IMAGE_OFFSET,
            .image_info.image_max_size = ARM_DRAM1_SIZE,
    # endif /* PRELOADED_BL33_BASE */
    
            .next_handoff_image_id = INVALID_IMAGE_ID,
        }
    #endif /* EL3_PAYLOAD_BASE */
    };
    
    REGISTER_BL_IMAGE_DESCS(bl2_mem_params_descs)
    
    
    /*******************************************************************************
     * This function loads SCP_BL2/BL3x images and returns the ep_info for
     * the next executable image.
     ******************************************************************************/
    entry_point_info_t *bl2_load_images(void)
    {
        bl_params_t *bl2_to_next_bl_params;
        bl_load_info_t *bl2_load_info;
        const bl_load_info_node_t *bl2_node_info;
        int plat_setup_done = 0;
        int err;
    
        /*
         * Get information about the images to load.
         */
        bl2_load_info = plat_get_bl_image_load_info();-----------------获取待加载镜像BL3x或SCP_EL2信息,然后遍历处理。
        assert(bl2_load_info);
        assert(bl2_load_info->head);
        assert(bl2_load_info->h.type == PARAM_BL_LOAD_INFO);
        assert(bl2_load_info->h.version >= VERSION_2);
        bl2_node_info = bl2_load_info->head;---------------------------bl2_node_info指向镜像第一个对象。
    
        while (bl2_node_info) {----------------------------------------循环遍历bl2_mem_params_descs成员并加载处理。
            /*
             * Perform platform setup before loading the image,
             * if indicated in the image attributes AND if NOT
             * already done before.
             */
            if (bl2_node_info->image_info->h.attr & IMAGE_ATTRIB_PLAT_SETUP) {----确定加载前是否需要进行特定平台初始化。
                if (plat_setup_done) {
                    WARN("BL2: Platform setup already done!!
    ");
                } else {
                    INFO("BL2: Doing platform setup
    ");
                    bl2_platform_setup();
                    plat_setup_done = 1;
                }
            }
    
            if (!(bl2_node_info->image_info->h.attr & IMAGE_ATTRIB_SKIP_LOADING)) {----确定是否需要跳过加载到RAM步骤;如否,则进行验证并加载。
                INFO("BL2: Loading image id %d
    ", bl2_node_info->image_id);
                err = load_auth_image(bl2_node_info->image_id,
                    bl2_node_info->image_info);----------------------------------------将镜像加载到RAM,然后进行验证。
                if (err) {
                    ERROR("BL2: Failed to load image (%i)
    ", err);
                    plat_error_handler(err);
                }
            } else {
                INFO("BL2: Skip loading image id %d
    ", bl2_node_info->image_id);
            }
    
            /* Allow platform to handle image information. */
            err = bl2_plat_handle_post_image_load(bl2_node_info->image_id);------------修改特定镜像的加载信息。
            if (err) {
                ERROR("BL2: Failure in post image load handling (%i)
    ", err);
                plat_error_handler(err);
            }
    
            /* Go to next image */
            bl2_node_info = bl2_node_info->next_load_info;------------------------------循环加载下一个镜像。
        }
    
        /*
         * Get information to pass to the next image.
         */
        bl2_to_next_bl_params = plat_get_next_bl_params();------------------------------获取下一个执行镜像入口信息,属性为EXECUTABLE和EP_FIRST_EXE,也即BL31。
        assert(bl2_to_next_bl_params);
        assert(bl2_to_next_bl_params->head);
        assert(bl2_to_next_bl_params->h.type == PARAM_BL_PARAMS);
        assert(bl2_to_next_bl_params->h.version >= VERSION_2);
    
        /* Flush the parameters to be passed to next image */
        plat_flush_next_bl_params();----------------------------------------------------将bl_mem_params_desc_ptr数据刷到DDR中,后面即将通过SMC跳转到BL1启动BL31,保持数据一致性。。
    
        return bl2_to_next_bl_params->head->ep_info;
    }

    参考文档

  • 相关阅读:
    数据库索引分析(一)
    对象的序列化(串行化)分析(一)
    Java 集合类 TreeSet、TreeMap
    查找杀死指定进程delphi
    delphi集合的用法
    debian 删除软件
    linux 各种国内源更新 (source)
    screen 命令使用记录
    Python 常用import
    常用Python函数
  • 原文地址:https://www.cnblogs.com/arnoldlu/p/14175126.html
Copyright © 2020-2023  润新知