• Deep Learning系统实训之三:卷积神经网络


    边界填充(padding):卷积过程中,越靠近图片中间位置的像素点越容易被卷积计算多次,越靠近边缘的像素点被卷积计算的次数越少,填充就是为了使原来边缘像素点的位置变得相对靠近中部,而我们又不想让填充的数据影响到我们的计算结果,故填充值选择均用0来填充。

    池化层不需要参数、只是对特征图进行压缩操作,以减少计算量:池化几乎不用平均池化,多用最大池化操作,对于最大池化,多选择特征图种每个小区域最大的那个值保留下来,因值最大,对应的信息也越重要,故最应将其保留。

     

  • 相关阅读:
    Safari-IoS调试
    前端加密技术
    gulp入门
    xss攻击
    xml 解析
    python 基本语法
    python初识
    字节
    神奇的算式
    linux-虚拟机安装
  • 原文地址:https://www.cnblogs.com/ariel-dreamland/p/9045093.html
Copyright © 2020-2023  润新知