• Deep Learning系统实训之一:深度学习基础知识


    K-近邻与交叉验证

    1 选取超参数的正确方法是:将原始训练集分为训练集和验证集,我们在验证集上尝试不同的超参数,最后保留表现最好的那个。

    2 如果训练数据量不够,使用交叉验证法,它能帮助我们在选取最优超参数的时候减少噪音。

    3 一旦找到最优的超参数,就让算法以该参数在测试集跑且只跑一次,并根据测试结果评价算法。

    4 最近邻分类器能够在CIFAR-10上得到将近40%的准确率。该算法简单易实现,但需要存储所有训练数据,并且在测试时过于消耗计算能力。

    5 最后,我们知道了仅仅使用L1和L2范数来进行像素比较是不够的,图像更多的是按照背景和颜色被分类,而不是语义主体本身。

    1 预处理你的数据:对你数据中的特征进行归一化(normalize),让其具有零平均值(zero mean)和单位方差(unit variance)。

    2 如果数据是高维数据,考虑使用降维方法。如PCA。

    3 将数据随机分入训练集和验证集。按照一般规律,70%-90%数据作为训练集。

    4 在验证集上调优,尝试足够多的K值,尝试L1和L2两种范数计算方式。

    超参数(曼哈顿距离与欧氏距离):

    损失函数:

    任何一个算法都会有一个损失函数。

    我们希望损失为零,为什么呢?损失越多说明我们错的越多,损失为零说明我们没做错啊。o(* ̄︶ ̄*)o

    Softmax分类器:

    Sigmoid函数:

    softmax实例:

  • 相关阅读:
    ubuntu命令
    mac获取root权限
    centos7安装解压缩工具 ncompress
    ubuntu17.04 配置go环境变量
    vue.js 拦截器
    ubuntu 安装jdk
    ubuntu安装deb文件
    初识 阿里云 SSL 证书申请
    java之XML
    LanProxy 内网映射穿透
  • 原文地址:https://www.cnblogs.com/ariel-dreamland/p/9032606.html
Copyright © 2020-2023  润新知