• Tensorboard可视化(关于TensorFlow不同版本引起的错误)


    # -*- coding: utf-8 -*-
    """
    Created on Sun Nov 5 15:28:50 2017

    @author: Administrator
    """

    import tensorflow as tf
    import numpy as np

    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    layer_name = 'layer%s' % n_layer
    with tf.name_scope(layer_name):
    with tf.name_scope('weights'):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')

    # tf.histogram_summary(layer_name + '/weights', Weights)
    tf.summary.histogram(layer_name + '/weights', Weights)

    with tf.name_scope('biases'):
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
    # tf.histogram_summary(layer_name + '/biases', biases)
    tf.summary.histogram(layer_name + '/biases', biases)
    with tf.name_scope('Wx_plus_b'):
    Wx_plus_b = tf.add(tf.matmul(inputs, Weights),biases)
    if activation_function is None:
    outputs = Wx_plus_b
    else:
    outputs = activation_function(Wx_plus_b)
    # tf.histogram_summary(layer_name + '/output', outputs)
    tf.summary.histogram(layer_name + '/output', outputs)
    return outputs

    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise

    with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None,1], name='x_input')
    ys = tf.placeholder(tf.float32, [None,1], name='y_input')

    l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
    prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

    with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))

    # tf.scalar_summary('loss', loss) # 纯量的变化 EVENTS显示
    tf.summary.scalar('loss', loss)

    with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    sess = tf.Session()
    # merged = tf.merge_all_summaries() #把所有的summary合并在一起,打包
    merged = tf.summary.merge_all()
    # writer = tf.train.SummaryWriter("D://logs",sess.graph)
    writer = tf.summary.FileWriter("D://logs",sess.graph)

    # sess.run(tf.initialize_all_variable())
    sess.run(tf.global_variables_initializer())

    for i in range(1000):
    sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
    if i % 50 == 0:
    result = sess.run(merged, feed_dict={xs:x_data, ys:y_data})
    writer.add_summary(result, i)

    1.   tf.histogram_summary()  >>  tf.summary.histogram()

    2.   tf.scalar_summary()  >>  tf.summary.scalar()

    3.   tf.merge_all_summaries()  >>  tf.summary.merge_all()

    4.   tf.train.SummaryWriter()  >>  tf.summary.FileWriter()

    5.   tf.initialize_all_variable()  >>  tf.global_variables_initializer()

    6.   重复运行报错: D://logs文件夹下只能有一个events.out.tfevents......事件

  • 相关阅读:
    WiFi热点
    计算器
    flask的使用
    Python logging
    串口
    C# 定时器
    C# 控件
    cookie 和 session
    文件
    Linux命令
  • 原文地址:https://www.cnblogs.com/aqianer/p/7787828.html
Copyright © 2020-2023  润新知