Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n.
For example:
Given n = 13,
Return 6, because digit 1 occurred in the following numbers: 1, 10, 11, 12, 13.
Hint:
- Beware of overflow.
Subscribe to see which companies asked this question
解法:参考http://blog.csdn.net/xudli/article/details/46798619。从个位循环到最高位,每次计算某一位上是1的数字个数。以算百位上1为例子: 假设百位上是0, 1, 和 >=2 三种情况:
case 1: n=3141092, a= 31410, b=92. 计算百位上1的个数应该为 3141 *100 次.
case 2: n=3141192, a= 31411, b=92. 计算百位上1的个数应该为 3141 *100 + (92+1) 次.
case 3: n=3141592, a= 31415, b=92. 计算百位上1的个数应该为 (3141+1) *100 次.
以上三种情况可以用 一个公式概括:
(a + 8) / 10 * m + (a % 10 == 1) * (b + 1);
class Solution { public: int countDigitOne(int n) { int ones = 0; for (long long i = 1; i <= n; i *= 10) { ones += (n / i + 8) / 10 * i + (n / i % 10 == 1) * (n % i + 1); } return ones; } };