• 89. Gray Code


    The gray code is a binary numeral system where two successive values differ in only one bit.
    
    Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code.
    A gray code sequence must begin with 0. For example, given n = 2, return [0,1,3,2]. Its gray code sequence is: 00 - 0 01 - 1 11 - 3 10 - 2 Note: For a given n, a gray code sequence is not uniquely defined. For example, [0,2,3,1] is also a valid gray code sequence according to the above definition. For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.

    Analysis:

    Try one more example, n = 3:

    000 - 0

    001 - 1

    011 - 3

    010 - 2

    110 - 6

    111 - 7

    101 - 5

    100 - 4 

    Comparing n = 2: [0,1,3,2] and n=3: [0,1,3,2,6,7,5,4], we found that the first four numbers in case n=3 are the same as the the numbers in case n=4.  Besides, [6,7,5,4] = [2+4,3+4,1+4,0+4].  Which means remaining numbers in case n=3 can also be calculated from the numbers in case n=4 in reversing order.  Therefore, we decided to use recursive approach to form the resulting ArrayList.

    divide && conquer

    public List<Integer> grayCode(int n) {
            List<Integer> res = new ArrayList<Integer>();
            if(n == 0) {
                res.add(0);
            }
            else {
                List<Integer> pre = grayCode(n-1);
                res.addAll(pre);
                for (int i=pre.size()-1; i>=0; i--) {
                    res.add(pre.get(i) + (int)Math.pow(2, n-1));
                }
            }
            return res;
        }
    

      Iterative 解法(推荐方法):每次也不用定义一个 ArrayList<Integer> pre = res, 只用记录当前res 的size就好了

    public class Solution {
        public List<Integer> grayCode(int n) {
            List<Integer> res = new ArrayList<Integer>();
            if (n < 0) return res;
            res.add(0);
            if (n == 0) return res;
            for (int i=1; i<=n; i++) {
                int size = res.size();
                for (int j=size-1; j>=0; j--) {
                    res.add(res.get(j) + (int)Math.pow(2, i-1));
                }
            }
            return res;
        }
    }
    

    算法复杂度是O(2+2^2+...+2^n-1)=O(2^n),所以是指数量级的,因为是结果数量无法避免。空间复杂度则是结果的大小,也是O(2^n)。  

     这些代码都要注意一个细节,即input为0时,output为[0],并不是[]

  • 相关阅读:
    680. Valid Palindrome II【easy】
    125. Valid Palindrome【easy】
    459. Repeated Substring Pattern【easy】
    2. Trailing Zeros【easy】
    142. O(1) Check Power of 2【easy】
    181. Flip Bits【easy】
    183.Wood Cut【hard】
    61. Search for a Range【medium】
    关闭微软对win10的推送
    让未激活的win8.1不再跳出提示激活的窗口
  • 原文地址:https://www.cnblogs.com/apanda009/p/7349882.html
Copyright © 2020-2023  润新知