• 391. Perfect Rectangle


    Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover of a rectangular region.

    Each rectangle is represented as a bottom-left point and a top-right point. For example, a unit square is represented as [1,1,2,2]. (coordinate of bottom-left point is (1, 1) and top-right point is (2, 2)).

    Example 1:

    rectangles = [
      [1,1,3,3],
      [3,1,4,2],
      [3,2,4,4],
      [1,3,2,4],
      [2,3,3,4]
    ]
    
    Return true. All 5 rectangles together form an exact cover of a rectangular region.
    
     

    Example 2:

    rectangles = [
      [1,1,2,3],
      [1,3,2,4],
      [3,1,4,2],
      [3,2,4,4]
    ]
    
    Return false. Because there is a gap between the two rectangular regions.
    
     

    Example 3:

    rectangles = [
      [1,1,3,3],
      [3,1,4,2],
      [1,3,2,4],
      [3,2,4,4]
    ]
    
    Return false. Because there is a gap in the top center.
    
     

    Example 4:

    rectangles = [
      [1,1,3,3],
      [3,1,4,2],
      [1,3,2,4],
      [2,2,4,4]
    ]
    
    Return false. Because two of the rectangles overlap with each other.

    这个题我甚至不知道该怎么总结。

    难就难在从这个题抽象出一种解法,看了别人的答案和思路= =然而没有归类总结到某种类型,这题相当于背了个题。。。

    简单的说,除了最外面的4个点,所有的点都会2次2次的出现,如果有覆盖,覆盖进去的点就不是成对出现了。

    最外面4个点围的面积等于所有小矩形面积的和。

    就用这2个判断就行了。

    判断成对的点用的SET,单次出现添加,第二次出现删除。。这样最后应该都删掉,SET里只剩下4个最外面的点。

    剩下的就是判断最外点,不停地更新。。

    Consider how the corners of all rectangles appear in the large rectangle if there's a perfect rectangular cover.
    Rule1: The local shape of the corner has to follow one of the three following patterns

      • Corner of the large rectangle (blue): it occurs only once among all rectangles
      • T-junctions (green): it occurs twice among all rectangles
      • Cross (red): it occurs four times among all rectangles

    For each point being a corner of any rectangle, it should appear even times except the 4 corners of the large rectangle. So we can put those points into a hash map and remove them if they appear one more time.

    At the end, we should only get 4 points. 

    Rule2:  the large rectangle area should be equal to the sum of small rectangles

    public class Solution {
        public boolean isRectangleCover(int[][] rectangles) {
            if (rectangles==null || rectangles.length==0 || rectangles[0].length==0) return false;
            int subrecAreaSum = 0;  //sum of subrectangle's area
            int x1 = Integer.MAX_VALUE; //large rectangle bottom left x-axis
            int y1 = Integer.MAX_VALUE; //large rectangle bottom left y-axis
            int x2 = Integer.MIN_VALUE; //large rectangle top right x-axis
            int y2 = Integer.MIN_VALUE; //large rectangle top right y-axis
            
            HashSet<String> set = new HashSet<String>(); // store points
            
            for(int[] rec : rectangles) {
                //check if it has large rectangle's 4 points
                x1 = Math.min(x1, rec[0]);
                y1 = Math.min(y1, rec[1]);
                x2 = Math.max(x2, rec[2]);
                y2 = Math.max(y2, rec[3]);
                
                //calculate sum of subrectangles
                subrecAreaSum += (rec[2]-rec[0]) * (rec[3] - rec[1]);
                
                //store this rectangle's 4 points into hashSet
                String p1 = Integer.toString(rec[0]) + "" + Integer.toString(rec[1]);
                String p2 = Integer.toString(rec[0]) + "" + Integer.toString(rec[3]);
                String p3 = Integer.toString(rec[2]) + "" + Integer.toString(rec[1]);
                String p4 = Integer.toString(rec[2]) + "" + Integer.toString(rec[3]);
                
                if (!set.add(p1)) set.remove(p1);
                if (!set.add(p2)) set.remove(p2);
                if (!set.add(p3)) set.remove(p3);
                if (!set.add(p4)) set.remove(p4);
            }
            
            if (set.size()!=4 || !set.contains(x1+""+y1) || !set.contains(x1+""+y2) || !set.contains(x2+""+y1) || !set.contains(x2+""+y2))
                return false;
            return subrecAreaSum == (x2-x1) * (y2-y1);
        }
    }
    

     矩阵的题不光会heap, bfs,dfs, 还有单纯的找规律, 遍历四周, 01编码, 求和, map存边角为字符串

    存为字符串 //store this rectangle's 4 points into hashSet
                String p1 = Integer.toString(rec[0]) + "" + Integer.toString(rec[1]);
     boolean add(E e) 
              如果此 set 中尚未包含指定元素,则添加指定元素。

    如果此 set 已经包含该元素,则该调用不改变此 set 并返回 false。结合构造方法上的限制,这就可以确保 set 永远不包含重复的元素

  • 相关阅读:
    PHP+MySQL存储数据出现中文乱码的问题
    IE和火狐的css兼容性问题
    JS调用Webservice
    NET-使用Js调用WebService
    ASP.NET 与 Ajax 的实现方式
    未能加载文件或程序集“System.Web.Extensions, Version=1.0.61025.0, Culture=neutral
    c#webservice的简单示例
    HttpRequest Get和Post调用其他页面的方法
    MYSQL 递归操作
    sql with as 用法
  • 原文地址:https://www.cnblogs.com/apanda009/p/7150028.html
Copyright © 2020-2023  润新知