CNN与RNN的结合
问题
前几天学习了RNN的推导以及代码,那么问题来了,能不能把CNN和RNN结合起来,我们通过CNN提取的特征,能不能也将其看成一个序列呢?答案是可以的。
但是我觉得一般直接提取的特征喂给哦RNN训练意义是不大的,因为RNN擅长处理的是不定长的序列,也就是说,seq size是不确定的,但是一般图像特征的神经元数量都是定的,这个时候再接个rnn说实话意义不大,除非设计一种结构可以让网络不定长输出。(我的一个简单想法就是再设计一条之路去学习一个神经元权重mask,按照规则过滤掉一些神经元,然后丢进rnn或者lstm训练)
如何实现呢
import torch
import torch.nn as nn
from torchsummary import summary
from torchvision import datasets,transforms
import torch.optim as optim
from tqdm import tqdm
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.feature_extractor = nn.Sequential(
nn.Conv2d(1,16,kernel_size = 3,stride=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16,64,kernel_size = 3,stride=2),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64,128,kernel_size = 3,stride=2),
nn.BatchNorm2d(128),
nn.ReLU(),
)
self.rnn = nn.RNN(128,256,2) # input_size,output_size,hidden_num
self.h0 = torch.zeros(2,32,256) # 层数 batchsize hidden_dim
self.predictor = nn.Linear(4*256,10)
def forward(self,x):
x = self.feature_extractor(x) # (-1,128,2,2),4个神经元,128维度
x,ht = self.rnn(x.permute(3,4,0,1).contiguous().view(4,-1,128),self.h0) # (h*w,batch_size,hidden_dim)
x = self.predictor(x.view(-1,256*4))
return x
if __name__ == "__main__":
model = Model()
#summary(model,(1,28,28),device = "cpu")
loss_fn = nn.CrossEntropyLoss()
train_dataset = datasets.MNIST(root="./data/",train = True,transform = transforms.ToTensor(),download = True)
test_dataset = datasets.MNIST(root="./data/",train = False,transform = transforms.ToTensor(),download = True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=32,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=128,
shuffle=False)
optimizer = optim.Adam(model.parameters(),lr = 1e-3)
print(len(train_loader))
for epoch in range(100):
epoch_loss = 0.
for x,target in train_loader:
#print(x.size())
y = model(x)
loss = loss_fn(y,target)
epoch_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("epoch : {} and loss is : {}".format(epoch +1,epoch_loss))
torch.save(model.state_dict(),"rnn_cnn.pth")
上面代码可以看出我已经规定了RNN输入神经元的个数,所以肯定是定长的输入,我训练之后是可以收敛的。
对于不定长,其实还是没办法改变每个batch的seq len,因为规定的一定是最长的seq len,所以没办法做到真正的不定长。所以我能做的就是通过支路学习一个权重作用到原来的feature上去,这个权重是0-1权重,其实这样就可以达到效果了。
import torch
import torch.nn as nn
from torchsummary import summary
from torchvision import datasets,transforms
import torch.optim as optim
import torch.nn.functional as F
from tqdm import tqdm
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.feature_extractor = nn.Sequential(
nn.Conv2d(1,16,kernel_size = 3,stride=2),
nn.BatchNorm2d(16),
nn.ReLU6(),
nn.Conv2d(16,64,kernel_size = 3,stride=2),
nn.BatchNorm2d(64),
nn.ReLU6(),
nn.Conv2d(64,128,kernel_size = 3,stride=2),
nn.BatchNorm2d(128),
nn.ReLU6(),
)
self.attn = nn.Conv2d(128,1,kernel_size = 1)
self.rnn = nn.RNN(128,256,2) # input_size,output_size,hidden_num
self.h0 = torch.zeros(2,32,256) # 层数 batchsize hidden_dim
self.predictor = nn.Linear(4*256,10)
def forward(self,x):
x = self.feature_extractor(x) # (-1,128,2,2),4个神经元,128维度
attn = F.relu(self.attn(x)) # (-1,1,2,2) -> (-1,4)
x = x * attn
#print(x.size())
x,ht = self.rnn(x.permute(3,4,0,1).contiguous().view(4,-1,128),self.h0) # (h*w,batch_size,hidden_dim)
#self.h0 = ht
x = self.predictor(x.view(-1,256*4))
return x
if __name__ == "__main__":
model = Model()
#summary(model,(1,28,28),device = "cpu")
#exit()
loss_fn = nn.CrossEntropyLoss()
train_dataset = datasets.MNIST(root="./data/",train = True,transform = transforms.ToTensor(),download = True)
test_dataset = datasets.MNIST(root="./data/",train = False,transform = transforms.ToTensor(),download = True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=32,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=128,
shuffle=False)
optimizer = optim.Adam(model.parameters(),lr = 1e-3)
print(len(train_loader))
for epoch in range(100):
epoch_loss = 0.
for x,target in train_loader:
#print(x.size())
y = model(x)
loss = loss_fn(y,target)
epoch_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("epoch : {} and loss is : {}".format(epoch +1,epoch_loss))
torch.save(model.state_dict(),"rnn_cnn.pth")
我自己训练了一下,后者要比前者收敛的快的多。