首先PO上主要Python代码(2.7), 这个代码在Deep Learning上可以找到.
1 # allocate symbolic variables for the data 2 index = T.lscalar() # index to a [mini]batch 3 x = T.matrix('x') # the data is presented as rasterized images 4 y = T.ivector('y') # the labels are presented as 1D vector of 5 # [int] labels 6 7 # construct the logistic regression class 8 # Each MNIST image has size 28*28 9 classifier = LogisticRegression(input=x, n_in=24 * 48, n_out=10) 10 11 # the cost we minimize during training is the negative log likelihood of 12 # the model in symbolic format 13 cost = classifier.negative_log_likelihood(y) 14 15 # compiling a Theano function that computes the mistakes that are made by 16 # the model on a minibatch 17 test_model = theano.function(inputs=[index], 18 outputs=classifier.errors(y), 19 givens={ 20 x: test_set_x[index * batch_size: (index + 1) * batch_size], 21 y: test_set_y[index * batch_size: (index + 1) * batch_size]}) 22 23 validate_model = theano.function(inputs=[index], 24 outputs=classifier.errors(y), 25 givens={ 26 x: valid_set_x[index * batch_size:(index + 1) * batch_size], 27 y: valid_set_y[index * batch_size:(index + 1) * batch_size]}) 28 29 # compute the gradient of cost with respect to theta = (W,b) 30 g_W = T.grad(cost=cost, wrt=classifier.W) 31 g_b = T.grad(cost=cost, wrt=classifier.b) 32 33 # specify how to update the parameters of the model as a list of 34 # (variable, update expression) pairs. 35 updates = [(classifier.W, classifier.W - learning_rate * g_W), 36 (classifier.b, classifier.b - learning_rate * g_b)] 37 38 # compiling a Theano function `train_model` that returns the cost, but in 39 # the same time updates the parameter of the model based on the rules 40 # defined in `updates` 41 train_model = theano.function(inputs=[index], 42 outputs=cost, 43 updates=updates, 44 givens={ 45 x: train_set_x[index * batch_size:(index + 1) * batch_size], 46 y: train_set_y[index * batch_size:(index + 1) * batch_size]})
代码长度不算太长, 只是逻辑关系需要厘清. 下面逐行分析这些代码.
代码中的T是theano.tensor的代名词.
行1~行13:
# allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels # construct the logistic regression class # Each MNIST image has size 28*28 classifier = LogisticRegression(input=x, n_in=24 * 48, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model in symbolic format cost = classifier.negative_log_likelihood(y)
声明index, x, y三个符号变量(类似Matlab的symbol), 分别用来指代训练样本批序号, 输入图像矩阵, 期望输出向量.
classifier是一个LR对象, 调用LR类的构造函数, 并将符号变量x作为输入, 我们就可以使用Theano.function方法在x和classifier中构造联系, 当x改变时, classifier也会改变.
cost指代classifier中的负对数相似度, 使用符号变量y作为输入, 此处的作用和classifier相同, 不再赘述.
行14~行28:
# compiling a Theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function(inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size]}) validate_model = theano.function(inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size]})
这里的2个model是容易让人迷惑的地方, 关于theano.function, 需要一些基础知识:
比如声明2个符号变量a, b: a, b = T.iscalar(), T.iscalar() , 它们都是整形(i)标量(scalar), 再声明一个变量c: c = a + b , 我们通过type(c)来查看其类型:
>>> type(c) <class 'theano.tensor.var.TensorVariable'> >>> type(a) <class 'theano.tensor.var.TensorVariable'>
c的类型和a, b相同, 都是Tensor变量. 至此准备工作完成, 我们通过theano.function来构建关系: add = theano.function(inputs = [a, b], output = c) . 这条语句就构造了一个函数add, 它接收a, b为输入, 输出为c. 我们在Python中这样使用它即可:
>>> add = theano.function(inputs = [a, b], outputs = c) >>> test = add(100, 100) >>> test array(200)
好了, 有了基础知识, 就可以理解这2个model的含义:
test_model = theano.function(inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size]})
输入是index, 输出则是classifier对象中的errors方法的返回值, 其中y作为errors方法的输入参数. 其中的classifier接收x作为输入参数.
givens关键字的作用是使用冒号后面的变量来替代冒号前面的变量, 本例中, 即使用测试数据中的第index批数据(一批有batch_size个)来替换x和y.
test_model用中文来解释就是: 接收第index批测试数据的图像数据x和期望输出y作为输入, 返回误差值的函数.
validate_model = theano.function(inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size]})
这里同上, 只不过使用的是验证数据.
行29~行32:
# compute the gradient of cost with respect to theta = (W,b) g_W = T.grad(cost=cost, wrt=classifier.W) g_b = T.grad(cost=cost, wrt=classifier.b)
计算的是梯度, 用于学习算法, T.grad(y, x) 计算的是相对于x的y的梯度.
行33~行37:
# specify how to update the parameters of the model as a list of # (variable, update expression) pairs. updates = [(classifier.W, classifier.W - learning_rate * g_W), (classifier.b, classifier.b - learning_rate * g_b)]
updates是一个长度为2的list, 每个元素都是一组tuple, 在theano.function中, 每次调用对应函数, 使用tuple中的第二个元素来更新第一个元素.
行38~行46:
# compiling a Theano function `train_model` that returns the cost, but in # the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function(inputs=[index], outputs=cost, updates=updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size]})
这里其余部分不再赘述. 需要注意的是增加了一个updates参数, 这个参数给定了每次调用train_model时对某些参数的修改(W, b). 另外输出也变成了cost函数(对数误差)而非test_model和valid-model中的errors函数(绝对误差).