• POI2014 FAR-FarmCraft 树形DP+贪心


    题目链接 https://www.luogu.org/problem/P3574

    题意

    翻译其实已经很明确了

    分析

    这题一眼就是贪心啊,但贪心的方法要思索一下,首先是考虑先走时间多的子树,但不太现实,因为时间跟点的个数也有关系,而且很有可能另外一棵子树不去走会闲置很长时间,就是这棵子树本来可以走一遍然后在子树装软件的时候去走别的树,所以不能这么贪心。那,要怎么办呢?
    对于一棵子树,我们必须要走的是跑路时间,而安装可以在去别的子树走的时候干,所以我们肯定要先弄安装时间-跑路时间最大的子树,因为这样的话,我们就可以在它安装的时候去弄别的子树,证明用反证法,先弄别的子树最后时长一定大于先弄它,所以跑完每一个子树后,把它的安装时间和跑路时间扔到堆里,最后把堆取完,就完了,状态转移方程(DP[u]=max(DP[son]+g[u]+1)),g数组记录的跑路时间。

    细节问题

    首先呢,longlong不需要,爆不掉。
    然后是加边,加单向边会出问题,加完从一号点开始可能不能走遍整张图,所以只能加双向边,加双向边数组要开2倍啊啊啊啊啊,本蒟蒻忘开然后RE了,接着我把5e5改成了6e5,还RE,然后我以为递归炸了,调了半天,我是不是傻。。。。

    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int N=6e5+10;
    struct Edge{
        int nxt,to;
    }e[N<<1];
    int Head[N],len;
    void Ins(int a,int b){
        e[++len].to=b;e[len].nxt=Head[a];Head[a]=len;
    }
    struct Node{
        int f,siz;
        Node(){}
        Node(int a,int b){f=a,siz=b;}     
        bool operator < (const Node&A)const{
            return f-siz<A.f-A.siz;
        }
    };
    int dp[N],g[N],val[N],que[N];
    void dfs(int u,int fa){
        priority_queue<Node> q;
        if(u-1)dp[u]=val[u];
        for(int i=Head[u];i;i=e[i].nxt){
            int v=e[i].to;
            if(v==fa)continue;
            dfs(v,u);q.push(Node(dp[v],g[v]));
        }
        while(!q.empty()){
            Node now=q.top();q.pop();
            dp[u]=max(dp[u],now.f+g[u]+1);
            g[u]+=now.siz+2;
        }
    }
    int main(){
        ios::sync_with_stdio(false);
        int n;
        cin>>n;
        for(int i=1;i<=n;i++)
            cin>>val[i];
        for(int i=1;i<n;i++){
            int a,b;
            cin>>a>>b;
            Ins(a,b);Ins(b,a);
        }
        dfs(1,0);
        cout<<max(dp[1],val[1]+g[1]);
        return 0;
    }
    
  • 相关阅读:
    format的用法

    TADOQuery池
    10分钟了解JSON Web令牌(JWT)
    PHP操作Redis数据库常用方法
    平时在PHP编码时有没有注意到这些问题
    利用 Composer 一步一步构建自己的 PHP 框架(四)——使用 ORM
    ORM的详解
    oracle NLS_LANG环境变量设置
    验证选择每日学习总结:DropDownList是否已选择验证、存储过程参数为sql字符串问题、将截断字符串或二进制数据。\r\n语句已终止
  • 原文地址:https://www.cnblogs.com/anyixing-fly/p/12649910.html
Copyright © 2020-2023  润新知