• ResNet代码实现


            import torch
            import torch.nn as nn
            from torch.hub import load_state_dict_from_url    
            model_urls = {
                'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
                'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
                'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
                'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
                'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
                'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
                'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
                'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
                'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
            }
    
    # 封装标准卷积
    def conv3x3(in_planes, out_planes, stride=1,padding=1):
       return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, bias=False)
            
    def conv1x1(in_planes, out_planes, stride=1):
        # 当卷积层后面跟着bn层时,卷积层不需要bias
        # 因为在bn层重新学习均值和方差
       return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
    
    class BasicBolck(nn.Module):
    
        # 通道放大倍数
        expansion = 1
        def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None):
    
        # 调用父类的初始化函数
        super(BasicBlock, self).__init__()
    
        # 如果没有指定Batchnormalization
        if norm_layer is None:
          # 使用标准的BatchNorm
          norm_layer = nn.BatchNorm2d
    
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride
    
      # forward用来调用,x是输入
      def forward(self, x):
        indentity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
    
        out = self.conv2(out)
        out = self.bn2(out)
        # 下采样
        if self.downsample is not None:
          identity = self.downsample(x)
    
        # 为什么out不下采样呢?stride=1就不下采样,stride=2已经下采样了
    
        # f(x)+x
        out += identity
        # 在加和之后再调用激活函数
        out = self.relu(out)
    
        return out
    
    class BottleNeck(nn.Module):
    
      # 放大倍数
      expansion = 4
    
      def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None):
        super(BottleNeck, self).__init___()
        if norm_layer is None:
          norm_layer = nn.BatchNorm2d
        
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = norm_layer(planes)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.conv3 = conv1x1(planes, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
      
      def forward(self, x):
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
    
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
    
        out = self.conv3(out)
        out = self.bn3(out)
        
        if self.downasample is not None:
          identity = self.downsample(x)
        
        out += identity
        out = self.relu(out)
    
        return out
    
    class ResNet(nn.Module):
      # num_class 分多少类
      def __init__(self, block, layers, num_class=1000, norm_layer=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
          norm_layer = nn.BatchNorm2d
        
        self.inplanes = 64
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        # 平均池化
        self.avgpool = nn.AdaptiveAvgPool2d((1,1))
        # 分类层
        self.fc = nn.Linear(512*block.expansion, num_class)
    
        # 参数初始化
        for m in self.modules():
          # 如果是卷积层
          if isinstance(m, nn.Conv2d):
            # 凯明初始化 
            # 主要的应用场景是搭配RElu激活函数
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
          # 如果是Batch层
          elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
            # 常量初始化 把权重和误差初始化为0,1
            nn.init.constant_(m.weight, 1)
            nn.init.constant_(m.bias, 0)
    
      def _make_layer(self, block, stride=1):
        # 生成stage里的内容
        norm_layer = self._norm_layer
        downsample = None
    
        # 判断是否需要下采样 stride!=1发生下采样
        if stride != 1 or self.inplanes != planes*bloack.expansion:
          # downsample 用1x1的卷积来调整维度
          # downsample是一个小的网络,由1x1卷积层和normlazition组成
          downsample = nn.Sequential(conv1x1(self.inplanes, planes*block.expansion, stride),norm_layer(planes*block.expansion))
        
        layers=[]
        layers.append(block(self.inplanes, planes, stride, downsample, norm_layer))
        self.inplanes = planes * self.expansion
        for _ in range(1, blocks):
          layer.append(block(self.inplanes, planes, norm_layer=norm_layer))
        # *list 是一个语法, 对list降维
        return nn.Sequential(*layers)
    
      def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
    
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        # 展平
        x = torch.flattern(x,1)
        x = self.fc(x)
    
        return x
    
    # 封装预加载训练
    def _resnet(arch, block, layers, pretrained, progress, **kwargs):
      model = ResNet(block, layers, **kwargs)
      # 如果需要预训练
      if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    
      return model
    
    def resnet(pretrained=False, progress=True, **kwargs):
      return _resnet('resnet152', BottleNeck, [3,8,36,3], pretrained, progress, **kwargs)
    
    model = resnet152(pretrained = True)
    model.eval()
    
  • 相关阅读:
    SCM基础之系统核心功能
    事件记录与变更请求
    SCM基础之配置管理功能
    SCM基础之好处
    SCM基础之配置管理实施
    善其事 利其器:快速制作SEO索引
    深入浅出之正则表达式(二)
    C# 读写文件方法总结
    C#常用正则式整理
    C#正则表达式类Match和Group类的理解
  • 原文地址:https://www.cnblogs.com/anxifeng/p/13415911.html
Copyright © 2020-2023  润新知