• mongodb 基础语法


    参考原文:菜鸟教程

    目录

    一、数据库
    二、文档
    三、索引
    四、聚合

    一、数据库

    show dbs  -- 查看所有数据库
    use DATABASE_NAME  -- 如果数据库不存在,则创建数据库,否则切换到指定数据库。
    db.dropDatabase()  -- 删除当前数据库
    db.COLLECTION_NAME.drop() -- 删除集合

     

    二、文档

    1. 插入文档

    db.col.insert({  
        title: 'MongoDB Course',
        tags: ['database', 'NoSQL']
    })
    document = ({  -- 将数据定义为一个变量
        title: 'MongoDB Course',
        tags: ['database', 'NoSQL']
    });
    db.col.save(document)

    2. 更新文档

    -- update
    db.collection.update(
       <query>,   -- 查询条件,类似sql的where语法
       <update>,  -- 更新的对象,类似sql的set语法
       {
         upsert: <boolean>,  -- 可选,默认是false,表示update的记录不存在时不插入数据,true则为插入,
         multi: <boolean>,   -- 可选,默认是false,只更新找到的第一条记录,true则更新查出来的多条记录。
         writeConcern: <document> -- 可选,抛出异常的级别
       }
    )
    
    db.col.update(
        {title: 'MongoDB Course'},
        {$set:{title: 'MongoDB'}}
    )
    db.col.find().pretty()
    
    -- save 通过传入的文档来替换已有文档
    db.col.save({   
        title: 'MongoDB',
        tags: ['database', 'NoSQL']
    })
    
    -- update更多例子
    db.col.update( { "id" : { $gt : 3 } } , { $set : { "desc" : "OK"} } );  -- 只更新第一条记录
    db.col.update( { "id" : { $gt : 3 } } , { $set : { "desc" : "OK"} },false,false ); --只更新第一条记录
    db.col.update( { "id" : { $gt : 3 } } , { $set : { "desc" : "OK"} },true, false ); -- 只添加第一条
    db.col.update( { "id" : { $gt : 3 } } , { $set : { "desc" : "OK"} },true, true );  --全部添加加进去
    db.col.update( { "id" : { $gt : 3 } } , { $set : { "desc" : "OK"} },false,true );  --全部更新

    3. 删除文档

    db.collection.remove(
       <query>, -- (可选)删除的文档的条件
       {
         justOne: <boolean>,  -- (可选)如果设为 true 或 1,则只删除一个文档。
         writeConcern: <document>  -- (可选)抛出异常的级别。
       }
    )
    db.col.remove({'title':'MongoDB Course '})

    4. 查询文档

    db.collection.find(query, projection) -- query:(可选)指定查询条件, projection:(可选)指定返回的键
    db.col.find().pretty() -- 以格式化的方式来显示所有文档

    (1) MongoDB 与 RDBMS Where 语句比较

    (2) AND和OR 条件

    db.col.find({"by":"tom", "title":"MongoDB"}) -- and
    db.col.find({$or:[{"by":"tom"},{"title": "MongoDB"}]}) -- or
    db.col.find({"likes":{$gt:50}, $or:[{"by":"tom"},{"title":"MongoDB"}]}) --'where likes>50 AND (by ='tom' OR title='MongoDB')'

    (3) 条件操作符

    -- $gt >  $gte >=   $lt <  $lte <=   $eq =  $ne != 
    db.col.find({likes : {$lte : 150}}) -- where likes <= 150
    db.col.find({likes : {$lt :200, $gt : 100}}) -- where likes>100 AND likes<200

    (4) $type操作符

    MongoDB 中的类型如下:

    db.col.find({"title" : {$type : 2}})  -- 获取 "col" 集合中 title 为 String 的数据

     (5) Limit与Skip方法

    limit()  -- 读取指定数量的数据, skip() -- 跳过指定数量的数据
    db.col.find({},{"title":1,_id:0}).limit(2)  -- 查询文档中的两条记录
    db.col.find({},{"title":1,_id:0}).skip(10).limit(100)  -- 读取从第10条记录后的100条记录

    (6) Sort排序方法

      指定排序的字段,并使用 1 和 -1 来指定排序的方式,其中 1 为升序排列,而-1是用于降序排列

    db.col.find({},{"title":1}).sort({"likes":-1})
    db.col.find({"title":"MongoDB"},{"title":1}).sort({"title":1}).skip(2).limit(10)

     

    三、索引

      索引是对数据库表中一列或多列的值进行排序的一种结构,索引通常能够极大的提高查询的效率。对于每个插入的数据,都会自动生成一条唯一的 _id 字段,_id 索引是绝大多数集合默认建立的索引。

    db.col.getIndexes() -- 察看索引
    db.col.ensureIndex({"title":-1}) -- 按title降序创建索引
    db.col.ensureIndex({"title": 1, by: 1}, {background: true}) -- 让创建工作在后台执行
    db.col.dropIndexes() -- 删除所有索引
    db.col.dropIndex("normal_index") -- 删除指定索引

    1. 创建索引

      ensureIndex() 接收可选参数,可选参数列表如下:

     

    2. 查询分析

      MongoDB 查询分析可以确保我们建议的索引是否有效,是查询语句性能分析的重要工具。查询分析常用函数有:explain() 和 hint()。

    -- 1. 使用 explain()
    db.users.ensureIndex({gender:1,user_name:1})
    db.users.find({gender:"M"},{user_name:1,_id:0}).explain()
    {
       -- MongoDB中索引存储在B树结构中,所以该查询使用了BtreeCursor类型的游标。没有使用索引的游标类型是BasicCursor。
       -- 可以通过该索引名称查看当前数据库下的system.indexes集合(系统自动创建),获取索引的详细信息。
       "cursor" : "BtreeCursor gender_1_user_name_1",
       "isMultiKey" : false,
       "n" : 1,
       "nscannedObjects" : 0,
       "nscanned" : 1,   -- nscanned/nscannedObjects表明此查询一共扫描了集合中多少个文档,这个数值和返回文档的数量越接近越好。
       "nscannedObjectsAllPlans" : 0,
       "nscannedAllPlans" : 1,
       "scanAndOrder" : false,
       "indexOnly" : true,  -- 字段为 true ,表示我们使用了索引。
       "nYields" : 0,
       "nChunkSkips" : 0,
       "millis" : 0, -- 当前查询所需时间,毫秒数。
       "indexBounds" : {...}  -- 当前查询具体使用的索引。
    }
    
    -- 2. 使用 hint()  虽然MongoDB查询优化器一般工作的很不错,但是也可以使用 hint 来强制 MongoDB 使用一个指定的索引。
    db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1}).explain() -- 指定了使用gender和user_name索引字段来查询

    3. 覆盖索引查询

      当查询中的所有字段是索引的一部分, MongoDB 只需从RAM中的索引获取数据,比扫描整个文档读取数据要快得多。

    • 所有的查询字段是索引的一部分
    • 所有的查询返回字段在同一个索引中
    -- user集合
    { "_id" : 1, "username" : "Amy", "gender" : "F", "score" : 100, "age" : 34 } 
    { "_id" : 2, "username" : "Ram", "gender" : "M", "score" : 90, "age" : 24 }
    db.user.ensureIndex({gender:1,username:1})
    db.user.find({gender:"M"},{username:1,_id:0}) -- 该查询会被索引覆盖,MongoDB不用去数据库文件中查找
    db.user.find({gender:"M"},{username:1}) -- 该查询不会被覆盖,由于我们的索引中不包括 _id字段,而此查询没有排除该字段

    4. 高级索引

      当所有索引字段是一个数组或是一个子文档,不能使用覆盖索引查询

    -- users集合
    {
        "name": "Tom Benzamin"
        "address": {"city": "Los Angeles", "state": "California", "pincode": "123"},  -- 子文档
        "tags": ["music", "cricket", "blogs"]  -- 数组
    }
    
    -- 索引数组字段: 在数组中创建索引,需要对数组中的每个字段依次建立索引。因此对数组tags建立索引,会为 music、cricket、blogs三个值建立单独的索引
    db.users.ensureIndex({"tags":1})
    db.users.find({tags:"cricket"}).explain() -- 执行结果中会显示 "cursor" : "BtreeCursor tags_1" ,表示已经使用了索引
    
    -- 索引子文档字段: 为子文档的三个字段创建索引
    db.users.ensureIndex({"address.city":1,"address.state":1,"address.pincode":1})
    db.users.find({"address.city":"Los Angeles"})   
    db.users.find({"address.city":"Los Angeles","address.state":"California","address.pincode":"123"})--查询表达式必须遵循指定的索引的顺序

    5. 索引限制

    (1) 额外开销: 每个索引占据一定的存储空间,在进行插入,更新和删除操作时也需要对索引进行操作。如果你很少对集合进行读取操作,建议不使用索引。
    (2) 内存(RAM)限制: 要确保该索引的大小不超过内存(RAM)的限制。如果索引的大小大于内存的限制,MongoDB会删除一些索引,这将导致性能下降。
    (3) 查询限制: 索引不能被以下的查询使用  a. 正则表达式及非操作符,如$nin, $not等     b. 算术运算符,如$mod等     c. $where 子句
    (4) 索引键限制:从2.6版本开始,如果现有的索引字段的值超过索引键的限制,MongoDB中不会创建索引。

    (5) 最大范围:   a. 集合中索引不能超过64个    b.索引名的长度不能超过128个字符   c.一个复合索引最多可以有31个字段

     

    四、聚合

    1. count() 和 distinct()

    count --统计文档数量
    db.collection.count(<query>) 或者 db.collection.find(<query>).count()
    db.user.count({"username":"amy"});  
    
    distinct --对集合中的文档进行去重处理
    db.collection.distinct(field,query)
    db.user.distinct("username",{“age":{$gt:28}});  -- 用于查询年龄age大于28岁的不同用户名

    2. aggregate()

    1. 聚合的表达式: 

    -- 对每个分组进行计数: select sex, count(*) personCount from col group by sex
    db.col.aggregate([{$group: {_id: '$sex', personCount: {$sum:1} }}]) 
      
    -- 对每个分组求某一列的总和sum/平均值avg/最大值max/最小值min/第一个值first/最后一个值/last
    -- select sex, sum(score) totalScore from col group by sex    
    db.col.aggregate([{$group: {_id: '$sex', totalScore: {$sum:'$score'} }}]) 
    
    -- 把每个分组的结果集插入到一个数组中$push/$addToSet(去掉重复的) 
    db.mycol.aggregate([{$group: {_id: 'sex', scores: {$push:′score'} }}])

    2. 管道操作符

      MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。

    • $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
    • $match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。
    • $group:将集合中的文档分组,可用于统计结果。
    • $sort:将输入文档排序后输出。
    • $limit:用来限制MongoDB聚合管道返回的文档数。
    • $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
    • $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值
    • $geoNear:输出接近某一地理位置的有序文档。
    db.user.aggregate( 
    [  
        {$project: {username: 1, score: 1}}, -- 指定输入字段,_id默认是包含的,可添加_id:0去掉
        {$match: {score: {$gt: 70, $lte: 90}}},  
        {$group: {_id: username, count: {$sum: 1}}},
        {$skip : 5}                        
        {$sort : {"username": 1}}
    ])  
  • 相关阅读:
    Vue自定义指令 directive
    Vue过滤器 filters
    贪心
    家庭作业
    线段
    数列极差
    shell
    智力大冲浪
    加工生产调度
    喷水装置
  • 原文地址:https://www.cnblogs.com/anxiao/p/8250404.html
Copyright © 2020-2023  润新知