• 【树链剖分 差分】bzoj3626: [LNOI2014]LCA


    把LCA深度转化的那一步还是挺妙的。之后就是差分加大力数据结构了。

    Description

    给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
    设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
    有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
    (即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)

    Input

    第一行2个整数n q。
    接下来n-1行,分别表示点1到点n-1的父节点编号。
    接下来q行,每行3个整数l r z。

    Output

    输出q行,每行表示一个询问的答案。每个答案对201314取模输出

    Sample Input

    5 2
    0
    0
    1
    1
    1 4 3
    1 4 2

    Sample Output

    8
    5

    HINT

    共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。


    题目分析

    我的做法&图片分析

    由于树的标号是随便标的,所以这里的$[l,r]$区间操作在树上并没有什么大的特殊意义。

    注意到如果$z$是给定的话,那么由于答案可减,我们可以对于序列来分块。

    当然分块只是一种想法,再来挖掘一下$z$给定情况的性质。

    这里求4和7的LCA。自然,LCA就是两点到根节点的第一个公共节点。不过这幅图可能还没看出什么。

    这幅图里7号节点是z,4,6,8节点是与z节点查询的节点。我们把与z节点查询的节点都沿路径向根方向+1。

    这样只需要查询z节点到根节点的路径权值和就能算出所有LCA的深度之和了。

    注意到这样处理之后,预处理的信息对于任意的z都适用了。

    至于题目要求的“根节点深度为1”,正好可以让我们把边权化为点权,做起来也更加方便。

    更理论化的题解

    在黄学长博客上看到一篇更加严谨的题解:

    显然,暴力求解的复杂度是无法承受的。
    考虑这样的一种暴力,我们把 z 到根上的点全部打标记,对于 l 到 r 之间的点,向上搜索到第一个有标记的点求出它的深度统计答案。观察到,深度其实就是上面有几个已标记了的点(包括自身)。所以,我们不妨把 z 到根的路径上的点全部 +1,对于 l 到 r 之间的点询问他们到根路径上的点权和。仔细观察上面的暴力不难发现,实际上这个操作具有叠加性,且可逆。也就是说我们可以对于 l 到 r 之间的点 i,将 i 到根的路径上的点全部 +1, 转而询问 z 到根的路径上的点(包括自身)的权值和就是这个询问的答案。把询问差分下,也就是用 [1, r] − [1, l − 1] 来计算答案,那么现在我们就有一个明显的解法。从 0 到 n − 1 依次插入点 i,即将 i 到根的路径上的点全部+1。离线询问答案即可。我们现在需要一个数据结构来维护路径加和路径求和,显然树链剖分或LCT 均可以完成这个任务。树链剖分的复杂度为 O((n + q)· log n · log n),LCT的复杂度为 O((n + q)· log n),均可以完成任务。至此,题目已经被我们完美解决。

    (大力数据结构~)

      1 #include<bits/stdc++.h>
      2 const int MO = 201314;
      3 const int maxn = 50035;
      4 const int maxm = 50035;
      5 
      6 struct node
      7 {
      8     int fa,top,son,tot;
      9 }a[maxn];
     10 struct QRs
     11 {
     12     int x,id,opt;
     13     QRs(int a=0, int b=0, int c=0):x(a),id(b),opt(c) {}
     14     bool operator < (QRs a) const
     15     {
     16         return x < a.x;
     17     }
     18 }q[maxn<<1];
     19 int chain[maxn],chTot;
     20 int f[maxn<<2],add[maxn<<2];
     21 int edges[maxm],nxt[maxm],head[maxn],edgeTot;
     22 int ansAdd[maxn],ansDel[maxn],qr[maxn];
     23 int n,m,tot;
     24 
     25 int read()
     26 {
     27     char ch = getchar();
     28     int num = 0;
     29     bool fl = 0;
     30     for (; !isdigit(ch); ch = getchar())
     31         if (ch=='-') fl = 1;
     32     for (; isdigit(ch); ch = getchar())
     33         num = (num<<1)+(num<<3)+ch-48;
     34     if (fl) num = -num;
     35     return num;
     36 }
     37 void addedge(int u, int v)
     38 {
     39     edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
     40 }
     41 void dfs1(int x, int fa)
     42 {
     43     a[x].fa = fa, a[x].son = -1, a[x].tot = 1;
     44     for (int i=head[x]; i!=-1; i=nxt[i])
     45     {
     46         int v = edges[i];
     47         dfs1(v, x), a[x].tot += a[v].tot;
     48         if (a[x].son==-1||a[a[x].son].tot < a[v].tot)
     49             a[x].son = v;
     50     }
     51 }
     52 void dfs2(int x, int top)
     53 {
     54     chain[x] = ++chTot, a[x].top = top;
     55     if (a[x].son==-1) return;
     56     dfs2(a[x].son, top);
     57     for (int i=head[x]; i!=-1; i=nxt[i])
     58         if (edges[i]!=a[x].son)
     59             dfs2(edges[i], edges[i]);
     60 }
     61 void pushup(int x)
     62 {
     63     f[x] = (f[x<<1]+f[x<<1|1])%MO;
     64 }
     65 void pushdown(int x, int l, int r)
     66 {
     67     if (add[x]){
     68         add[x<<1] += add[x], add[x<<1|1] += add[x];
     69         f[x<<1] += l*add[x], f[x<<1|1] += r*add[x];
     70         f[x<<1] %= MO, f[x<<1|1] %= MO;
     71         add[x] = 0;
     72     }
     73 }
     74 void update(int rt, int L, int R, int l, int r)
     75 {
     76     if (L <= l&&r <= R){
     77         add[rt]++, f[rt] = (f[rt]+r-l+1)%MO;
     78         return;
     79     }
     80     int mid = (l+r)>>1;
     81     pushdown(rt, mid-l+1, r-mid);
     82     if (L <= mid) update(rt<<1, L, R, l, mid);
     83     if (R > mid) update(rt<<1|1, L, R, mid+1, r);
     84     pushup(rt);
     85 }
     86 void updateChain(int x, int y)
     87 {
     88     while (a[x].top!=a[y].top)
     89     {
     90         update(1, chain[a[x].top], chain[x], 1, n);
     91         x = a[a[x].top].fa;
     92     }
     93     update(1, chain[y], chain[x], 1, n);
     94 }
     95 int query(int rt, int L, int R, int l, int r)
     96 {
     97     if (L <= l&&r <= R) return f[rt];
     98     int mid = (l+r)>>1, ret = 0;
     99     pushdown(rt, mid-l+1, r-mid);
    100     if (L <= mid) ret += query(rt<<1, L, R, l, mid);
    101     if (R > mid) ret += query(rt<<1|1, L, R, mid+1, r);
    102     return ret%MO;
    103 }
    104 int queryChain(int x, int y)
    105 {
    106     int ret = 0;
    107     while (a[x].top!=a[y].top)
    108     {
    109         ret += query(1, chain[a[x].top], chain[x], 1, n);
    110         x = a[a[x].top].fa;
    111     }
    112     ret += query(1, chain[y], chain[x], 1, n);
    113     return ret%MO;
    114 }
    115 int main()
    116 {
    117     memset(head, -1, sizeof head);
    118     n = read(), m = read();
    119     for (int i=1; i<n; i++) addedge(read(), i);
    120     for (int i=1; i<=m; i++)
    121     {
    122         q[++tot] = QRs(read()-1, i, 0), q[++tot] = QRs(read(), i, 1);
    123         qr[i] = read();
    124     }
    125     std::sort(q+1, q+tot+1);
    126     dfs1(0, -1);
    127     dfs2(0, 0);
    128     int now = -1;
    129     for (int i=1; i<=tot; i++)
    130     {
    131         while (now < q[i].x)
    132             updateChain(++now, 0);
    133         int id = q[i].id;
    134         if (q[i].opt)
    135             ansAdd[id] = queryChain(qr[id], 0);
    136         else ansDel[id] = queryChain(qr[id], 0);
    137     }
    138     for (int i=1; i<=m; i++)
    139         printf("%d
    ",(ansAdd[i]-ansDel[i]+MO)%MO);
    140     return 0;
    141 }

    END

  • 相关阅读:
    Microsoft Artificial Intelligence Conference(2018.05.21)
    Insider Dev Tour(2018.06.28)
    AWS re:Invent(2019.01.09)
    OPPO Developers Conference(2018.12.26)
    Tencent Cloud Developers Conference(2018.12.15)
    China Intelligent Office Summit(2018.11.21)
    International Programming Retreat Day(2018.11.17)
    Intel Artificial Intelligence Conference(2018.11.14)
    OSC Source Code Innovation Salon(2018.10.20)
    Java CAS 比较并且更换值
  • 原文地址:https://www.cnblogs.com/antiquality/p/9304447.html
Copyright © 2020-2023  润新知