• Mtcnn进行人脸剪裁和对齐B


    Mtcnn进行人脸剪裁和对齐

     1 from scipy import misc
     2 import tensorflow as tf
     3 import detect_face
     4 import cv2
     5 # import matplotlib.pyplot as plt
     6 from PIL import Image
     7 import os
     8 # import scipy.misc
     9 # %pylab inline
    10 fin = 'D:datamale'
    11 fout = 'D:data\rainmale'
    12 minsize = 20  # minimum size of face
    13 threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    14 factor = 0.709  # scale factor
    15 margin = 44
    16 frame_interval = 3
    17 batch_size = 1000
    18 image_size = 182
    19 input_image_size = 160
    20 
    21 print('Creating networks and loading parameters')
    22 
    23 with tf.Graph().as_default():
    24     gpu_options = tf.GPUOptions(allow_growth=True)
    25     sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
    26     with sess.as_default():
    27         pnet, rnet, onet = detect_face.create_mtcnn(sess, 'D:\code\real-time-deep-face-recognition-master\20170512-110547')
    28 
    29 
    30 i= 0
    31 
    32 for file in os.listdir(fin):
    33     try:
    34             
    35         file_fullname = fin + '/' + file
    36         img = misc.imread(file_fullname)
    37         # i+= 1
    38         # img = misc.imread(image_path)
    39         bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
    40         nrof_faces = bounding_boxes.shape[0]  # 人脸数目
    41         print(nrof_faces)
    42         #print('找到人脸数目为:{}'.format(nrof_faces))
    43     
    44         # print(bounding_boxes)
    45     
    46         crop_faces = []
    47         if nrof_faces != 0 :
    48             for face_position in bounding_boxes:
    49                 face_position = face_position.astype(int)
    50                 print(face_position[0:4])
    51                 cv2.rectangle(img, (face_position[0], face_position[1]), (face_position[2], face_position[3]), (0, 255, 0), 2)
    52                 crop = img[face_position[1]:face_position[3],
    53                        face_position[0]:face_position[2], ]
    54                 # print(crop)
    55                 # crop = cv2.resize(crop, (96, 96), interpolation=cv2.INTER_CUBIC)
    56                 crop_faces.append(crop)
    57                 img2 = Image.open(file_fullname)
    58                 a = face_position[0:4]
    59                 # print('crop_faces:',crop_faces)
    60                 # a = [face_position[0:4]]
    61                 box = (a)
    62                 roi = img2.crop(box)
    63                 i = roi.resize((224, 224))
    64     
    65                 out_path = fout + '/' + file
    66     
    67                 i.save(out_path)
    68                 print('success')
    69         else:
    70             pass
    71     except:
    72         pass
  • 相关阅读:
    20169205 2016-2017-2 《移动平台应用开发实践》第4周学习总结
    20169205 2016-2017-2《网络攻防》第4周总结
    20169205 2016-2017-2 《移动平台应用开发实践》第3周学习总结
    tcpdump使用
    wireshark使用
    20169205 2016-2017-2《网络攻防》第3周总结
    OpenSSH/PuTTY/SSH使用
    Aircrack使用
    Metasploit使用
    20155325 2017-2018 1 《信息安全系统设计基础》 第十周学习总结
  • 原文地址:https://www.cnblogs.com/ansang/p/8313302.html
Copyright © 2020-2023  润新知