• 【python】常用内建模块


    【datetime】

    No1:

    获取当前时间

    No2:

    时区转换

    >>> from datetime import datetime, timedelta, timezone
    >>> tz_utc_8 = timezone(timedelta(hours=8)) # 创建时区UTC+8:00
    >>> now = datetime.now()
    >>> now
    datetime.datetime(2015, 5, 18, 17, 2, 10, 871012)
    >>> dt = now.replace(tzinfo=tz_utc_8) # 强制设置为UTC+8:00
    >>> dt
    datetime.datetime(2015, 5, 18, 17, 2, 10, 871012, tzinfo=datetime.timezone(datetime.timedelta(0, 28800)))
    # 拿到UTC时间,并强制设置时区为UTC+0:00:
    >>> utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc)
    >>> print(utc_dt)
    2015-05-18 09:05:12.377316+00:00
    # astimezone()将转换时区为北京时间:
    >>> bj_dt = utc_dt.astimezone(timezone(timedelta(hours=8)))
    >>> print(bj_dt)
    2015-05-18 17:05:12.377316+08:00
    # astimezone()将转换时区为东京时间:
    >>> tokyo_dt = utc_dt.astimezone(timezone(timedelta(hours=9)))
    >>> print(tokyo_dt)
    2015-05-18 18:05:12.377316+09:00
    # astimezone()将bj_dt转换时区为东京时间:
    >>> tokyo_dt2 = bj_dt.astimezone(timezone(timedelta(hours=9)))
    >>> print(tokyo_dt2)
    2015-05-18 18:05:12.377316+09:00

    【collections】

     No3:

    No4:

    deque方便插入和删除

    OrderedDict有序

    >>> from collections import OrderedDict
    >>> d = dict([('a', 1), ('b', 2), ('c', 3)])
    >>> d # dict的Key是无序的
    {'a': 1, 'c': 3, 'b': 2}
    >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
    >>> od # OrderedDict的Key是有序的
    OrderedDict([('a', 1), ('b', 2), ('c', 3)])
    >>> od = OrderedDict()
    >>> od['z'] = 1
    >>> od['y'] = 2
    >>> od['x'] = 3
    >>> list(od.keys()) # 按照插入的Key的顺序返回
    ['z', 'y', 'x']

     FIFO(先进先出)的dict

    from collections import OrderedDict
    
    class LastUpdatedOrderedDict(OrderedDict):
    
        def __init__(self, capacity):
            super(LastUpdatedOrderedDict, self).__init__()
            self._capacity = capacity
    
        def __setitem__(self, key, value):
            containsKey = 1 if key in self else 0
            if len(self) - containsKey >= self._capacity:
                last = self.popitem(last=False)
                print('remove:', last)
            if containsKey:
                del self[key]
                print('set:', (key, value))
            else:
                print('add:', (key, value))
            OrderedDict.__setitem__(self, key, value)

     Counter计数器

    >>> from collections import Counter
    >>> c = Counter()
    >>> for ch in 'programming':
    ...     c[ch] = c[ch] + 1
    ...
    >>> c
    Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})

    【base64】

    No5:

    Base64是一种用64个字符来表示任意二进制数据的方法。

    >>> import base64
    >>> base64.b64encode(b'binaryx00string')
    b'YmluYXJ5AHN0cmluZw=='
    >>> base64.b64decode(b'YmluYXJ5AHN0cmluZw==')
    b'binaryx00string'
    >>> base64.b64encode(b'ixb7x1dxfbxefxff')
    b'abcd++//'
    >>> base64.urlsafe_b64encode(b'ixb7x1dxfbxefxff')
    b'abcd--__'
    >>> base64.urlsafe_b64decode('abcd--__')
    b'ixb7x1dxfbxefxff'

    No6:

    【struct】

    pack的第一个参数是处理指令,'>I'的意思是:

    >表示字节顺序是big-endian,也就是网络序,I表示4字节无符号整数。

     【摘要算法】

    No7:

    摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)

     

    No8:

    【hmac】

    No9:

    【itertools】迭代

    count()

    >>> import itertools
    >>> natuals = itertools.count(1)
    >>> for n in natuals:
    ...     print(n)
    ...

    数字无限增长,差点没爆掉

    cycle()

    >>> import itertools
    >>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
    >>> for c in cs:
    ...     print(c)
    ...

    ABC无限重复,又差点没爆掉

    repeat()--限定重复次数

    chain()--可以把一组迭代对象串联起来,形成一个更大的迭代器:

    groupby()--把迭代器中相邻的重复元素挑出来放在一起:

     

    No10:

    try:
        f = open('/path/to/file', 'r')
        f.read()
    finally:
        if f:
            f.close()

    可简化为

    with open('/path/to/file', 'r') as f:
        f.read()

    No11:

    class Query(object):
    
        def __init__(self, name):
            self.name = name
    
        def __enter__(self):
            print('Begin')
            return self
    
        def __exit__(self, exc_type, exc_value, traceback):
            if exc_type:
                print('Error')
            else:
                print('End')
    
        def query(self):
            print('Query info about %s...' % self.name)

    使用

    with Query('Bob') as q:
        q.query()

    》》》》类可简化为

    from contextlib import contextmanager
    
    class Query(object):
    
        def __init__(self, name):
            self.name = name
    
        def query(self):
            print('Query info about %s...' % self.name)
    
    @contextmanager
    def create_query(name):
        print('Begin')
        q = Query(name)
        yield q
        print('End')

    使用

    with create_query('Bob') as q:
        q.query()

    No12:

    No13:

    from contextlib import closing
    from urllib.request import urlopen
    
    with closing(urlopen('https://www.python.org')) as page:
        for line in page:
            print(line)

    结果居然打印出整个html界面的代码

    【GET】

    No14:

    from urllib import request
    
    req = request.Request('http://www.douban.com/')
    req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
    with request.urlopen(req) as f:
        print('Status:', f.status, f.reason)
        for k, v in f.getheaders():
            print('%s: %s' % (k, v))
        print('Data:', f.read().decode('utf-8'))

    结果会返回豆瓣网的移动端页面

    No15:

    【POST】

    模拟微博登陆

    from urllib import request, parse
    
    print('Login to weibo.cn...')
    email = input('Email: ')
    passwd = input('Password: ')
    login_data = parse.urlencode([
        ('username', email),
        ('password', passwd),
        ('entry', 'mweibo'),
        ('client_id', ''),
        ('savestate', '1'),
        ('ec', ''),
        ('pagerefer', 'https://passport.weibo.cn/signin/welcome?entry=mweibo&r=http%3A%2F%2Fm.weibo.cn%2F')
    ])
    
    req = request.Request('https://passport.weibo.cn/sso/login')
    req.add_header('Origin', 'https://passport.weibo.cn')
    req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
    req.add_header('Referer', 'https://passport.weibo.cn/signin/login?entry=mweibo&res=wel&wm=3349&r=http%3A%2F%2Fm.weibo.cn%2F')
    
    with request.urlopen(req, data=login_data.encode('utf-8')) as f:
        print('Status:', f.status, f.reason)
        for k, v in f.getheaders():
            print('%s: %s' % (k, v))
        print('Data:', f.read().decode('utf-8'))

    No16:

    【Handler】

    proxy_handler = urllib.request.ProxyHandler({'http': 'http://www.example.com:3128/'})
    proxy_auth_handler = urllib.request.ProxyBasicAuthHandler()
    proxy_auth_handler.add_password('realm', 'host', 'username', 'password')
    opener = urllib.request.build_opener(proxy_handler, proxy_auth_handler)
    with opener.open('http://www.example.com/login.html') as f:
        pass

    No17:

    【XML】

    操作XML有两种方法:DOM和SAX。DOM会把整个XML读入内存,解析为树,因此占用内存大,解析慢,优点是可以任意遍历树的节点。SAX是流模式,边读边解析,占用内存小,解析快,缺点是我们需要自己处理事件。

    正常情况下,优先考虑SAX,因为DOM实在太占内存。

    from xml.parsers.expat import ParserCreate
    
    class DefaultSaxHandler(object):
        def start_element(self, name, attrs):
            print('sax:start_element: %s, attrs: %s' % (name, str(attrs)))
    
        def end_element(self, name):
            print('sax:end_element: %s' % name)
    
        def char_data(self, text):
            print('sax:char_data: %s' % text)
    
    xml = r'''<?xml version="1.0"?>
    <ol>
        <li><a href="/python">Python</a></li>
        <li><a href="/ruby">Ruby</a></li>
    </ol>
    '''
    
    handler = DefaultSaxHandler()
    parser = ParserCreate()
    parser.StartElementHandler = handler.start_element
    parser.EndElementHandler = handler.end_element
    parser.CharacterDataHandler = handler.char_data
    parser.Parse(xml)
    L = []
    L.append(r'<?xml version="1.0"?>')
    L.append(r'<root>')
    L.append(encode('some & data'))
    L.append(r'</root>')
    return ''.join(L)

    No18:

    【HTMLParser】

    from html.parser import HTMLParser
    from html.entities import name2codepoint
    
    class MyHTMLParser(HTMLParser):
    
        def handle_starttag(self, tag, attrs):
            print('<%s>' % tag)
    
        def handle_endtag(self, tag):
            print('</%s>' % tag)
    
        def handle_startendtag(self, tag, attrs):
            print('<%s/>' % tag)
    
        def handle_data(self, data):
            print(data)
    
        def handle_comment(self, data):
            print('<!--', data, '-->')
    
        def handle_entityref(self, name):
            print('&%s;' % name)
    
        def handle_charref(self, name):
            print('&#%s;' % name)
    
    parser = MyHTMLParser()
    parser.feed('''<html>
    <head></head>
    <body>
    <!-- test html parser -->
        <p>Some <a href="#">html</a> HTML&nbsp;tutorial...<br>END</p>
    </body></html>''')
  • 相关阅读:
    根据界面上的button增加、删除、重命名文件夹,名字是数据库下面某一表单的某一列的名字
    打包测试的过程记录
    java中return的作用
    UVA
    UVA
    UVA
    HDU
    HDU
    spring技术详解
    Java对象的生命周期与垃圾回收以及四种引用
  • 原文地址:https://www.cnblogs.com/anni-qianqian/p/9239668.html
Copyright © 2020-2023  润新知