Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
解题思路:
试想一下,如果我们从头遍历这个数组。对于数组中的其中一个元素,它只有两个选择:
1. 要么加入之前的数组加和之中(跟别人一组)
2. 要么自己单立一个数组(自己单开一组)
所以对于这个元素应该如何选择,就看他能对哪个组的贡献大。如果跟别人一组,能让总加和变大,还是跟别人一组好了;如果自己起个头一组,自己的值比之前加和的值还要大,那么还是自己单开一组好了。
所以利用一个sum数组,记录每一轮sum的最大值,sum[i]表示当前这个元素是跟之前数组加和一组还是自己单立一组好,然后维护一个全局最大值即位答案。
Java code:
第一种写法:
public class Solution { public int maxSubArray(int[] nums) { int len = nums.length; int[] sum = new int[len]; int max = nums[0]; sum[0] = nums[0]; for(int i = 1; i< len; i++) { sum[i] = Math.max(nums[i], nums[i] + sum[i-1]); max = Math.max(max, sum[i]); } return max; } }
第二种写法: sum不用数组,只用一个int
public class Solution { public int maxSubArray(int[] nums) { int sum = nums[0]; int max = nums[0]; for(int i = 1; i< nums.length; i++) { sum = Math.max(nums[i], nums[i] + sum); max = Math.max(max, sum); } return max; } }
Reference:
1. http://www.programcreek.com/2013/02/leetcode-maximum-subarray-java/
2. http://www.programcreek.com/2013/02/leetcode-maximum-subarray-java/