• AI


    基本分类

    官网示例:https://www.tensorflow.org/tutorials/keras/basic_classification
    主要步骤:

    1.   加载Fashion MNIST数据集
    2.   探索数据:了解数据集格式
    3.   预处理数据
    4.   构建模型:设置层、编译模型
    5.   训练模型
    6.   评估准确率
    7.   做出预测:可视化

    Fashion MNIST数据集

    tf.keras

    • Keras是一个用于构建和训练深度学习模型的高级API
    • TensorFlow中的tf.keras是Keras API规范的TensorFlow实现,可以运行任何与Keras兼容的代码,保留了一些细微的差别
    • 最新版TensorFlow中的tf.keras版本可能与PyPI中的最新Keras版本不同
    • https://www.tensorflow.org/api_docs/python/tf/keras/

    过拟合

    如果机器学习模型在新数据上的表现不如在训练数据上的表现,就表示出现过拟合

    示例

    脚本内容

    GitHub:https://github.com/anliven/Hello-AI/blob/master/Google-Learn-and-use-ML/1_basic_classification.py

      1 # coding=utf-8
      2 import tensorflow as tf
      3 from tensorflow import keras
      4 import numpy as np
      5 import matplotlib.pyplot as plt
      6 import os
      7 
      8 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
      9 print("TensorFlow version: {}  - tf.keras version: {}".format(tf.VERSION, tf.keras.__version__))  # 查看版本
     10 
     11 # ### 加载数据集
     12 # 网络畅通的情况下,可以从 TensorFlow 直接访问 Fashion MNIST,只需导入和加载数据即可
     13 # 或者手工下载文件,并存放在“~/.keras/datasets”下的fashion-mnist目录
     14 fashion_mnist = keras.datasets.fashion_mnist
     15 (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
     16 # 训练集:train_images 和 train_labels 数组,用于学习的数据
     17 # 测试集:test_images 和 test_labels 数组,用于测试模型
     18 # 图像images为28x28的NumPy数组,像素值介于0到255之间
     19 # 标签labels是整数数组,介于0到9之间,对应于图像代表的服饰所属的类别,每张图像都映射到一个标签
     20 
     21 class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
     22                'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']  # 类别名称
     23 
     24 # ### 探索数据:了解数据格式
     25 print("train_images.shape: {}".format(train_images.shape))  # 训练集中有60000张图像,每张图像都为28x28像素
     26 print("train_labels len: {}".format(len(train_labels)))  # 训练集中有60000个标签
     27 print("train_labels: {}".format(train_labels))  # 每个标签都是一个介于 0 到 9 之间的整数
     28 print("test_images.shape: {}".format(test_images.shape))  # 测试集中有10000张图像,每张图像都为28x28像素
     29 print("test_labels len: {}".format(len(test_labels)))  # 测试集中有10000个标签
     30 print("test_labels: {}".format(test_labels))
     31 
     32 # ### 预处理数据
     33 # 必须先对数据进行预处理,然后再训练网络
     34 plt.figure(num=1)  # 创建图形窗口,参数num是图像编号
     35 plt.imshow(train_images[0])  # 绘制图片
     36 plt.colorbar()  # 渐变色度条
     37 plt.grid(False)  # 显示网格
     38 plt.savefig("./outputs/sample-1-figure-1.png", dpi=200, format='png')  # 保存文件,必须在plt.show()前使用,否则将是空白内容
     39 plt.show()  # 显示
     40 plt.close()  # 关闭figure实例,如果要创建多个figure实例,必须显示调用close方法来释放不再使用的figure实例
     41 
     42 # 值缩小为0到1之间的浮点数
     43 train_images = train_images / 255.0
     44 test_images = test_images / 255.0
     45 
     46 # 显示训练集中的前25张图像,并在每张图像下显示类别名称
     47 plt.figure(num=2, figsize=(10, 10))  # 参数figsize指定宽和高,单位为英寸
     48 for i in range(25):  # 前25张图像
     49     plt.subplot(5, 5, i + 1)
     50     plt.xticks([])  # x坐标轴刻度
     51     plt.yticks([])  # y坐标轴刻度
     52     plt.grid(False)
     53     plt.imshow(train_images[i], cmap=plt.cm.binary)
     54     plt.xlabel(class_names[train_labels[i]])  # x坐标轴名称
     55 plt.savefig("./outputs/sample-1-figure-2.png", dpi=200, format='png')
     56 plt.show()
     57 plt.close()
     58 
     59 # ### 构建模型
     60 # 构建神经网络需要先配置模型的层,然后再编译模型
     61 # 设置层
     62 model = keras.Sequential([
     63     keras.layers.Flatten(input_shape=(28, 28)),  # 将图像格式从二维数组(28x28像素)转换成一维数组(784 像素)
     64     keras.layers.Dense(128, activation=tf.nn.relu),  # 全连接神经层,具有128个节点(或神经元)
     65     keras.layers.Dense(10, activation=tf.nn.softmax)])  # 全连接神经层,具有10个节点的softmax层
     66 # 编译模型
     67 model.compile(optimizer=tf.train.AdamOptimizer(),  # 优化器:根据模型看到的数据及其损失函数更新模型的方式
     68               loss='sparse_categorical_crossentropy',  # 损失函数:衡量模型在训练期间的准确率。
     69               metrics=['accuracy'])  # 指标:用于监控训练和测试步骤;这里使用准确率(图像被正确分类的比例)
     70 
     71 # ### 训练模型
     72 # 将训练数据馈送到模型中,模型学习将图像与标签相关联
     73 model.fit(train_images,  # 训练数据
     74           train_labels,  # 训练数据
     75           epochs=5,  # 训练周期(训练模型迭代轮次)
     76           verbose=2  # 日志显示模式:0为安静模式, 1为进度条(默认), 2为每轮一行
     77           )  # 调用model.fit 方法开始训练,使模型与训练数据“拟合
     78 
     79 # ### 评估准确率
     80 # 比较模型在测试数据集上的表现
     81 test_loss, test_acc = model.evaluate(test_images, test_labels)
     82 print('Test loss: {} - Test accuracy: {}'.format(test_loss, test_acc))
     83 
     84 # ### 做出预测
     85 predictions = model.predict(test_images)  # 使用predict()方法进行预测
     86 print("The first prediction: {}".format(predictions[0]))  # 查看第一个预测结果(包含10个数字的数组,分别对应10种服饰的“置信度”
     87 label_number = np.argmax(predictions[0])  # 置信度值最大的标签
     88 print("label: {} - class name: {}".format(label_number, class_names[label_number]))
     89 print("Result true or false: {}".format(test_labels[0] == label_number))  # 对比测试标签,查看该预测是否正确
     90 
     91 
     92 # 可视化:将该预测绘制成图来查看全部10个通道
     93 def plot_image(m, predictions_array, true_label, img):
     94     predictions_array, true_label, img = predictions_array[m], true_label[m], img[m]
     95     plt.grid(False)
     96     plt.xticks([])
     97     plt.yticks([])
     98     plt.imshow(img, cmap=plt.cm.binary)
     99     predicted_label = np.argmax(predictions_array)
    100     if predicted_label == true_label:
    101         color = 'blue'  # 正确的预测标签为蓝色
    102     else:
    103         color = 'red'  # 错误的预测标签为红色
    104     plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
    105                                          100 * np.max(predictions_array),
    106                                          class_names[true_label]),
    107                color=color)
    108 
    109 
    110 def plot_value_array(n, predictions_array, true_label):
    111     predictions_array, true_label = predictions_array[n], true_label[n]
    112     plt.grid(False)
    113     plt.xticks([])
    114     plt.yticks([])
    115     thisplot = plt.bar(range(10), predictions_array, color="#777777")
    116     plt.ylim([0, 1])
    117     predicted_label = np.argmax(predictions_array)
    118     thisplot[predicted_label].set_color('red')
    119     thisplot[true_label].set_color('blue')
    120 
    121 
    122 # 查看第0张图像、预测和预测数组
    123 i = 0
    124 plt.figure(num=3, figsize=(8, 5))
    125 plt.subplot(1, 2, 1)
    126 plot_image(i, predictions, test_labels, test_images)
    127 plt.subplot(1, 2, 2)
    128 plot_value_array(i, predictions, test_labels)
    129 plt.xticks(range(10), class_names, rotation=45)  # x坐标轴刻度,参数rotation表示label旋转显示角度
    130 plt.savefig("./outputs/sample-1-figure-3.png", dpi=200, format='png')
    131 plt.show()
    132 plt.close()
    133 
    134 # 查看第12张图像、预测和预测数组
    135 i = 12
    136 plt.figure(num=4, figsize=(8, 5))
    137 plt.subplot(1, 2, 1)
    138 plot_image(i, predictions, test_labels, test_images)
    139 plt.subplot(1, 2, 2)
    140 plot_value_array(i, predictions, test_labels)
    141 plt.xticks(range(10), class_names, rotation=45)  # range(10)作为x轴的刻度,class_names作为对应的标签
    142 plt.savefig("./outputs/sample-1-figure-4.png", dpi=200, format='png')
    143 plt.show()
    144 plt.close()
    145 
    146 # 绘制图像:正确的预测标签为蓝色,错误的预测标签为红色,数字表示预测标签的百分比(总计为 100)
    147 num_rows = 5
    148 num_cols = 3
    149 num_images = num_rows * num_cols
    150 plt.figure(num=5, figsize=(2 * 2 * num_cols, 2 * num_rows))
    151 for i in range(num_images):
    152     plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
    153     plot_image(i, predictions, test_labels, test_images)
    154     plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
    155     plot_value_array(i, predictions, test_labels)
    156     plt.xticks(range(10), class_names, rotation=45)
    157 plt.savefig("./outputs/sample-1-figure-5.png", dpi=200, format='png')
    158 plt.show()
    159 plt.close()
    160 
    161 # 使用经过训练的模型对单个图像进行预测
    162 image = test_images[0]  # 从测试数据集获得一个图像
    163 print("img shape: {}".format(image.shape))  # 图像的shape信息
    164 image = (np.expand_dims(image, 0))  # 添加到列表中
    165 print("img shape: {}".format(image.shape))
    166 predictions_single = model.predict(image)  # model.predict返回一组列表,每个列表对应批次数据中的每张图像
    167 print("prediction_single: {}".format(predictions_single))  # 查看预测,预测结果是一个具有10个数字的数组,分别对应10种不同服饰的“置信度”
    168 
    169 plt.figure(num=6)
    170 plot_value_array(0, predictions_single, test_labels)
    171 plt.xticks(range(10), class_names, rotation=45)
    172 plt.savefig("./outputs/sample-1-figure-6.png", dpi=200, format='png')
    173 plt.show()
    174 plt.close()
    175 
    176 prediction_result = np.argmax(predictions_single[0])  # 获取批次数据中相应图像的预测结果(置信度值最大的标签)
    177 print("prediction_result: {}".format(prediction_result))

    运行结果

    common line

    C:UsersanlivenAppDataLocalcondacondaenvsmlccpython.exe D:/Anliven/Anliven-Code/PycharmProjects/TempTest/TempTest.py
    TensorFlow version: 1.12.0
    train_images.shape: (60000, 28, 28)
    train_labels len: 60000
    train_labels: [9 0 0 ... 3 0 5]
    test_images.shape: (10000, 28, 28)
    test_labels len: 10000
    test_labels: [9 2 1 ... 8 1 5]
    Epoch 1/5
     - 3s - loss: 0.5077 - acc: 0.8211
    Epoch 2/5
     - 3s - loss: 0.3790 - acc: 0.8632
    Epoch 3/5
     - 3s - loss: 0.3377 - acc: 0.8755
    Epoch 4/5
     - 3s - loss: 0.3120 - acc: 0.8855
    Epoch 5/5
     - 3s - loss: 0.2953 - acc: 0.8914
    
       32/10000 [..............................] - ETA: 15s
     2208/10000 [=====>........................] - ETA: 0s 
     4576/10000 [============>.................] - ETA: 0s
     7008/10000 [====================>.........] - ETA: 0s
     9344/10000 [===========================>..] - ETA: 0s
    10000/10000 [==============================] - 0s 30us/step
    Test loss: 0.3584352566242218 - Test accuracy: 0.8711
    The first prediction: [4.9706377e-06 2.2675355e-09 1.3649772e-07 3.6149192e-08 4.7982059e-08
     8.5262489e-03 1.5245891e-05 3.2628113e-03 1.6874857e-05 9.8817366e-01]
    label: 9 - class name: Ankle boot
    Result true or false: True
    img shape: (28, 28)
    img shape: (1, 28, 28)
    prediction_single: [[4.9706327e-06 2.2675313e-09 1.3649785e-07 3.6149192e-08 4.7982059e-08
      8.5262526e-03 1.5245891e-05 3.2628146e-03 1.6874827e-05 9.8817366e-01]]
    prediction_result: 9
    
    Process finished with exit code 0

    Figure1

    Figure2

    Figure3

    Figure4

    Figure5

    Figure6

    问题处理

    问题1:执行fashion_mnist.load_data()失败

    错误提示
    Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
    ......
    Exception: URL fetch failure on https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz: None -- [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond

    处理方法1

    选择一个链接,

    手工下载下面四个文件,并存放在“~/.keras/datasets”下的fashion-mnist目录。

    • train-labels-idx1-ubyte.gz
    • train-images-idx3-ubyte.gz
    • t10k-labels-idx1-ubyte.gz
    • t10k-images-idx3-ubyte.gz
    guowli@5CG450158J MINGW64 ~/.keras/datasets
    $ pwd
    /c/Users/guowli/.keras/datasets
    
    guowli@5CG450158J MINGW64 ~/.keras/datasets
    $ ls -l
    total 0
    drwxr-xr-x 1 guowli 1049089 0 Mar 27 14:44 fashion-mnist/
    
    guowli@5CG450158J MINGW64 ~/.keras/datasets
    $ ls -l fashion-mnist/
    total 30164
    -rw-r--r-- 1 guowli 1049089  4422102 Mar 27 15:47 t10k-images-idx3-ubyte.gz
    -rw-r--r-- 1 guowli 1049089     5148 Mar 27 15:47 t10k-labels-idx1-ubyte.gz
    -rw-r--r-- 1 guowli 1049089 26421880 Mar 27 15:47 train-images-idx3-ubyte.gz
    -rw-r--r-- 1 guowli 1049089    29515 Mar 27 15:47 train-labels-idx1-ubyte.gz

    处理方法2

    手工下载文件,存放在指定目录。
    改写“tensorflowpythonkerasdatasetsfashion_mnist.py”定义的load_data()函数。

    from tensorflow.python.keras.utils import get_file
    import numpy as np
    import pathlib
    import gzip
    
    
    def load_data():  # 改写“tensorflowpythonkerasdatasetsfashion_mnist.py”定义的load_data()函数
        base = "file:///" + str(pathlib.Path.cwd()) + "\"  # 当前目录
    
        files = [
            'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
            't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
        ]
    
        paths = []
        for fname in files:
            paths.append(get_file(fname, origin=base + fname))
    
        with gzip.open(paths[0], 'rb') as lbpath:
            y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
    
        with gzip.open(paths[1], 'rb') as imgpath:
            x_train = np.frombuffer(
                imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
    
        with gzip.open(paths[2], 'rb') as lbpath:
            y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
    
        with gzip.open(paths[3], 'rb') as imgpath:
            x_test = np.frombuffer(
                imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
    
        return (x_train, y_train), (x_test, y_test)
    
    
    (train_images, train_labels), (test_images, test_labels) = load_data()

    问题2:使用gzip.open()打开.gz文件失败

    错误提示

    “OSError: Not a gzipped file (b' ')”

    处理方法

    对于损坏的、不完整的.gz文件,zip.open()将无法打开。检查.gz文件是否完整无损。

    参考信息

    https://github.com/tensorflow/tensorflow/issues/170

  • 相关阅读:
    路由器端口映射
    字符编码笔记:ASCII,Unicode和UTF-8
    2、Spring之AOP
    八、模板方法模式
    三、装饰者模式
    七、适配器模式
    六、命令模式
    五、单件模式
    乐观锁与悲观锁——解决并发问题
    一、策略模式
  • 原文地址:https://www.cnblogs.com/anliven/p/10612178.html
Copyright © 2020-2023  润新知