• tensorflow.reshap(tensor,shape,name)的使用说明


    tensorflow as tf

    tf.reshape(tensor, shape, name=None) 
    reshape作用是将tensor变换为指定shape的形式。 
    其中shape为一个列表形式,特殊的一点是列表中可以存在-1。-1代表的含义是不用我们自己指定这一维的大小,函数会自动计算(根据已给定的维度,自动推出-1指定的维度),但列表中只能存在一个-1。(当然如果存在多个-1,就是一个存在多解的方程了)

    # tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
    # tensor 't' has shape [9]
    reshape(t, [3, 3]) ==> [[1, 2, 3],
                            [4, 5, 6],
                            [7, 8, 9]]
    
    # tensor 't' is [[[1, 1], [2, 2]],
    #                [[3, 3], [4, 4]]]
    # tensor 't' has shape [2, 2, 2]
    reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
                            [3, 3, 4, 4]]
    
    # tensor 't' is [[[1, 1, 1],
    #                 [2, 2, 2]],
    #                [[3, 3, 3],
    #                 [4, 4, 4]],
    #                [[5, 5, 5],
    #                 [6, 6, 6]]]
    # tensor 't' has shape [3, 2, 3]
    # pass '[-1]' to flatten 't'
    reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]
    
    # -1 can also be used to infer the shape
    
    # -1 is inferred to be 9:
    reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
                             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
    # -1 is inferred to be 2:
    reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
                             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
    # -1 is inferred to be 3:
    reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],
                                  [2, 2, 2],
                                  [3, 3, 3]],
                                 [[4, 4, 4],
                                  [5, 5, 5],
                                  [6, 6, 6]]]
    
    # tensor 't' is [7]
    # shape `[]` reshapes to a scalar
    reshape(t, []) ==> 7
    

      

  • 相关阅读:
    浅谈MVP与ModelViewViewModel(MVVM)设计模式
    策略模式
    C#验证码
    如何招到烂程序员
    承载和使用WCF服务
    .NET Remoting 使用总结
    基于.Net Remoting的应用程序
    HTML5 是什么?
    关于HTTP及XMLHTTP状态代码一览
    Remoting多个信道(Chennel)的注册问题
  • 原文地址:https://www.cnblogs.com/anhoo/p/9343761.html
Copyright © 2020-2023  润新知