• 658. Find K Closest Elements


    Given a sorted array, two integers k and x, find the k closest elements to x in the array. The result should also be sorted in ascending order. If there is a tie, the smaller elements are always preferred.

    Example 1:

    Input: [1,2,3,4,5], k=4, x=3
    Output: [1,2,3,4] 

    Example 2:

    Input: [1,2,3,4,5], k=4, x=-1
    Output: [1,2,3,4] 

    Note:

    1. The value k is positive and will always be smaller than the length of the sorted array.
    2. Length of the given array is positive and will not exceed 104
    3. Absolute value of elements in the array and x will not exceed 104

    Solution 1: set a map, the key is |arr[i]-x|, the value is the index vector, eg, 1:[1,3] for example 1 input.  O(klogk+n)

     1 class Solution {
     2 public:
     3     vector<int> findClosestElements(vector<int>& arr, int k, int x) {
     4         map<int,vector<int>> m;
     5         vector<int> res;
     6         for (int i=0;i<arr.size();i++){
     7             int distance=abs(arr[i]-x);
     8             m[distance].push_back(i);
     9         }
    10         int count=0;
    11         for (auto it=m.begin();it!=m.end();it++){
    12                 int size=it->second.size();
    13                 for (int i=0;i<size;i++){
    14                     if (count<k){
    15                         int index=it->second[i];
    16                         res.push_back(arr[index]);
    17                         count++;
    18                     }                    
    19                 }
    20                                     
    21         }
    22         sort(res.begin(),res.end());
    23         return res;
    24     }
    25 };

    Solution 2: use the binary search to find the first number which is >=x, then, determine the indices of the start and the end of a subarray in arr, where the subarray is our result. The time complexity is O(logn + k).

     1 class Solution {
     2 public:
     3     vector<int> findClosestElements(vector<int>& arr, int k, int x) {
     4         int index=lower_bound(arr.begin(),arr.end(),x)-arr.begin(); //binary search:log(n)
     5         int i=index-1,j=index;
     6         while(k--){
     7             if (i<0||(j<arr.size()&&abs(arr[j]-x)<abs(arr[i]-x))) j++;
     8             else i--;
     9         }
    10         vector<int> res(arr.begin()+i+1,arr.begin()+j);
    11         return res;
    12     }
    13 };

     line 4 use the lower_bound which is a binary search function like below.

    int binarySearch(vector<int>& arr,int x){
            int beg=0,end=arr.size()-1,pos;
            while (beg<end){
                int mid=(beg+end)/2;
                if (arr[mid]==x) return mid;
                if (arr[mid]<x) {beg=mid+1;pos=beg;}
                if (arr[mid]>x) {end=mid;pos=end;}
            }
            return pos;
        }
  • 相关阅读:
    数据的独立同分布检验
    基于密度聚类的DBSCAN和kmeans算法比较
    Python 爬虫笔记、多线程、xml解析、基础笔记(不定时更新)
    多进程之multiprocessing模块、守护进程、互斥锁
    程序与进程的区别,并发与并行的区别,多进程的实现原理
    并发编程之守护进程
    MySQL帮助文档的使用
    MySQL操作之DCL
    MySQL操作之DML
    MySQL操作之DDL
  • 原文地址:https://www.cnblogs.com/anghostcici/p/7359833.html
Copyright © 2020-2023  润新知