• 566. Reshape the Matrix


    In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new one with different size but keep its original data.

    You're given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively.

    The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were.

    If the 'reshape' operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.

    Example 1:

    Input: 

    nums = 

    [[1,2],

     [3,4]]

    r = 1, c = 4

    Output: 

    [[1,2,3,4]]

    Explanation:

    The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list.

     

    Example 2:

    Input: 

    nums = 

    [[1,2],

     [3,4]]

    r = 2, c = 4

    Output: 

    [[1,2],

     [3,4]]

    Explanation:

    There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix.

     

    Note:

    1. The height and width of the given matrix is in range [1, 100].
    2. The given r and c are all positive.

    Solution 1: use the extra 1-D vector to store the elements

     1 class Solution {
     2 public:
     3     vector<vector<int>> matrixReshape(vector<vector<int>>& nums, int r, int c) {
     4         int size=0;
     5         for (int i=0;i<nums.size();i++){
     6             size+=nums[i].size();
     7         }
     8         if (r*c!=size) return nums;
     9         vector<int> matrixOned;
    10         for (int i=0;i<nums.size();i++){
    11             for (int j=0;j<nums[i].size();j++){
    12                 matrixOned.push_back(nums[i][j]);
    13             }
    14         }
    15         int index=0;
    16         vector<vector<int>> res;
    17         for (int i=0;i<r;i++){
    18             res.push_back(vector<int>());
    19             for (int j=0;j<c;j++){
    20                 res[i].push_back(matrixOned[index++]);
    21             }
    22         }
    23         return res;
    24     }
    25 };

    Solution 2: convert the 2D coordinate of target matrix to 1D coordinate(line 9) and then find the corresponding 2D coordiante in the original matrix(line 10).

     1 class Solution {
     2 public:
     3     vector<vector<int>> matrixReshape(vector<vector<int>>& nums, int r, int c) {
     4         int m=nums.size(),n=nums[0].size();
     5         if (m*n!=r*c) return nums;
     6         vector<vector<int>> res(r,vector<int>(c));
     7         for (int i=0;i<r;i++) {
     8             for (int j=0;j<c;j++) {
     9                 int ind=i*c+j;
    10                 res[i][j]=nums[ind/n][ind%n];
    11             }
    12         }
    13         return res;
    14     }
    15 };
  • 相关阅读:
    PyTorch 60 分钟入门教程:数据并行处理
    调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数
    图片格式在线转换
    非常好的Oracle教程
    符号大全
    图片在线生成
    奥比岛人物立绘
    Linux 下的分屏利器-tmux安装、原理及使用
    CentOS7 安装极点五笔输入法
    zabbix监控服务搭建
  • 原文地址:https://www.cnblogs.com/anghostcici/p/6915681.html
Copyright © 2020-2023  润新知