• SSD Network Architecture--keras version


    这里的网络架构和论文中插图中的网络架构是相一致的。
    对了,忘了说了,这里使用的keras版本是1.2.2,等源码读完之后,我自己改一个2.0.6版本上传到github上面。
    可别直接粘贴复制,里面有些中文的解释,不一定可行的。
    #defint input shape
    input_shape
    = (300,300,3)
    #defint the number of classes num_classes
    = 21
    #Here the network is wrapped in to a dictory because it more easy to make some operations. net
    = {} # Block 1 input_tensor = Input(shape=input_shape)
    #defint the image hight and wight img_size
    = (input_shape[1], input_shape[0]) net['input'] = input_tensor net['conv1_1'] = Convolution2D(64, 3, 3, activation='relu', border_mode='same', name='conv1_1')(net['input']) net['conv1_2'] = Convolution2D(64, 3, 3, activation='relu', border_mode='same', name='conv1_2')(net['conv1_1']) net['pool1'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same', name='pool1')(net['conv1_2']) # Block 2 net['conv2_1'] = Convolution2D(128, 3, 3, activation='relu', border_mode='same', name='conv2_1')(net['pool1']) net['conv2_2'] = Convolution2D(128, 3, 3, activation='relu', border_mode='same', name='conv2_2')(net['conv2_1']) net['pool2'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same', name='pool2')(net['conv2_2']) # Block 3 net['conv3_1'] = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='conv3_1')(net['pool2']) net['conv3_2'] = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='conv3_2')(net['conv3_1']) net['conv3_3'] = Convolution2D(256, 3, 3, activation='relu', border_mode='same', name='conv3_3')(net['conv3_2']) net['pool3'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same', name='pool3')(net['conv3_3']) # Block 4 net['conv4_1'] = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='conv4_1')(net['pool3']) net['conv4_2'] = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='conv4_2')(net['conv4_1'])
    #the first layer be operated net[
    'conv4_3'] = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='conv4_3')(net['conv4_2']) net['pool4'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same', name='pool4')(net['conv4_3']) # Block 5 net['conv5_1'] = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='conv5_1')(net['pool4']) net['conv5_2'] = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='conv5_2')(net['conv5_1']) net['conv5_3'] = Convolution2D(512, 3, 3, activation='relu', border_mode='same', name='conv5_3')(net['conv5_2']) net['pool5'] = MaxPooling2D((3, 3), strides=(1, 1), border_mode='same', name='pool5')(net['conv5_3'])
    #here is the FC6 in the orginal VGG16 Network,There move to Atrous Convolution for the reason i don't know. # FC6 net['fc6'] = AtrousConvolution2D(1024, 3, 3, atrous_rate=(6, 6), activation='relu', border_mode='same', name='fc6')(net['pool5'])
    #the second layer to be operated # FC7 net['fc7'] = Convolution2D(1024, 1, 1, activation='relu', border_mode='same', name='fc7')(net['fc6']) # x = Dropout(0.5, name='drop7')(x) # Block 6 net['conv6_1'] = Convolution2D(256, 1, 1, activation='relu', border_mode='same', name='conv6_1')(net['fc7'])
    #the third layer to be opreated net[
    'conv6_2'] = Convolution2D(512, 3, 3, subsample=(2, 2), activation='relu', border_mode='same', name='conv6_2')(net['conv6_1']) # Block 7 net['conv7_1'] = Convolution2D(128, 1, 1, activation='relu', border_mode='same', name='conv7_1')(net['conv6_2']) net['conv7_2'] = ZeroPadding2D()(net['conv7_1'])
    #the forth layer to be operated net[
    'conv7_2'] = Convolution2D(256, 3, 3, subsample=(2, 2), activation='relu', border_mode='valid', name='conv7_2')(net['conv7_2']) # Block 8 net['conv8_1'] = Convolution2D(128, 1, 1, activation='relu', border_mode='same', name='conv8_1')(net['conv7_2'])
    #the fifth layer to be operated net[
    'conv8_2'] = Convolution2D(256, 3, 3, subsample=(2, 2), activation='relu', border_mode='same', name='conv8_2')(net['conv8_1'])
    # the last layer to be operated
    # Last Pool net['pool6'] = GlobalAveragePooling2D(name='pool6')(net['conv8_2']) # Prediction from conv4_3
    # net['conv4_3']._shape = (?, 38, 38, 512)
    # 算了还是说中文吧,这个层是用来对输入数据进行正则化的层,有参数需要学习,输出的数据形式和输入输入形式是一致的。
    net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3']) num_priors = 3 #here is *4 because the box need 4 number to define,here is only predice the box coordinate x = Convolution2D(num_priors * 4, 3, 3, border_mode='same', name='conv4_3_norm_mbox_loc')(net['conv4_3_norm']) net['conv4_3_norm_mbox_loc'] = x flatten = Flatten(name='conv4_3_norm_mbox_loc_flat') net['conv4_3_norm_mbox_loc_flat'] = flatten(net['conv4_3_norm_mbox_loc'])
    #the box coordinate is finished now it will perdice the classes
    name = 'conv4_3_norm_mbox_conf' if num_classes != 21: name += '_{}'.format(num_classes)
    # here is start predict the classes
    x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same', name=name)(net['conv4_3_norm']) net['conv4_3_norm_mbox_conf'] = x flatten = Flatten(name='conv4_3_norm_mbox_conf_flat') net['conv4_3_norm_mbox_conf_flat'] = flatten(net['conv4_3_norm_mbox_conf'])
    #这里是用来对conv4_3层的feature map生成论文中所说的default box,对没错,就是直接使用Feature map来进行default box的生成
    #当然这里要指定一些参数,这些参数是需要好好斟酌的。 priorbox
    = PriorBox(img_size, 30.0, aspect_ratios=[2], variances=[0.1, 0.1, 0.2, 0.2], name='conv4_3_norm_mbox_priorbox') net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm']) #好了,到这里第一个层的操作就完成了,下面其他层的操作都是相类似的啦。 # Prediction from fc7 num_priors = 6 net['fc7_mbox_loc'] = Convolution2D(num_priors * 4, 3, 3, border_mode='same', name='fc7_mbox_loc')(net['fc7']) flatten = Flatten(name='fc7_mbox_loc_flat') net['fc7_mbox_loc_flat'] = flatten(net['fc7_mbox_loc']) name = 'fc7_mbox_conf' if num_classes != 21: name += '_{}'.format(num_classes) net['fc7_mbox_conf'] = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same', name=name)(net['fc7']) flatten = Flatten(name='fc7_mbox_conf_flat') net['fc7_mbox_conf_flat'] = flatten(net['fc7_mbox_conf']) priorbox = PriorBox(img_size, 60.0, max_size=114.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='fc7_mbox_priorbox') net['fc7_mbox_priorbox'] = priorbox(net['fc7']) # Prediction from conv6_2 num_priors = 6 x = Convolution2D(num_priors * 4, 3, 3, border_mode='same', name='conv6_2_mbox_loc')(net['conv6_2']) net['conv6_2_mbox_loc'] = x flatten = Flatten(name='conv6_2_mbox_loc_flat') net['conv6_2_mbox_loc_flat'] = flatten(net['conv6_2_mbox_loc']) name = 'conv6_2_mbox_conf' if num_classes != 21: name += '_{}'.format(num_classes) x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same', name=name)(net['conv6_2']) net['conv6_2_mbox_conf'] = x flatten = Flatten(name='conv6_2_mbox_conf_flat') net['conv6_2_mbox_conf_flat'] = flatten(net['conv6_2_mbox_conf']) priorbox = PriorBox(img_size, 114.0, max_size=168.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv6_2_mbox_priorbox') net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2']) # Prediction from conv7_2 num_priors = 6 x = Convolution2D(num_priors * 4, 3, 3, border_mode='same', name='conv7_2_mbox_loc')(net['conv7_2']) net['conv7_2_mbox_loc'] = x flatten = Flatten(name='conv7_2_mbox_loc_flat') net['conv7_2_mbox_loc_flat'] = flatten(net['conv7_2_mbox_loc']) name = 'conv7_2_mbox_conf' if num_classes != 21: name += '_{}'.format(num_classes) x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same', name=name)(net['conv7_2']) net['conv7_2_mbox_conf'] = x flatten = Flatten(name='conv7_2_mbox_conf_flat') net['conv7_2_mbox_conf_flat'] = flatten(net['conv7_2_mbox_conf']) priorbox = PriorBox(img_size, 168.0, max_size=222.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv7_2_mbox_priorbox') net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2']) # Prediction from conv8_2 num_priors = 6 x = Convolution2D(num_priors * 4, 3, 3, border_mode='same', name='conv8_2_mbox_loc')(net['conv8_2']) net['conv8_2_mbox_loc'] = x flatten = Flatten(name='conv8_2_mbox_loc_flat') net['conv8_2_mbox_loc_flat'] = flatten(net['conv8_2_mbox_loc']) name = 'conv8_2_mbox_conf' if num_classes != 21: name += '_{}'.format(num_classes) x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same', name=name)(net['conv8_2']) net['conv8_2_mbox_conf'] = x flatten = Flatten(name='conv8_2_mbox_conf_flat') net['conv8_2_mbox_conf_flat'] = flatten(net['conv8_2_mbox_conf']) priorbox = PriorBox(img_size, 222.0, max_size=276.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='conv8_2_mbox_priorbox') net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2']) # Prediction from pool6 num_priors = 6 x = Dense(num_priors * 4, name='pool6_mbox_loc_flat')(net['pool6']) net['pool6_mbox_loc_flat'] = x name = 'pool6_mbox_conf_flat' if num_classes != 21: name += '_{}'.format(num_classes) x = Dense(num_priors * num_classes, name=name)(net['pool6']) net['pool6_mbox_conf_flat'] = x priorbox = PriorBox(img_size, 276.0, max_size=330.0, aspect_ratios=[2, 3], variances=[0.1, 0.1, 0.2, 0.2], name='pool6_mbox_priorbox')
    #由于这里的维数不对,因此要修改Feature map层对应的维数信息
    if K.image_dim_ordering() == 'tf': target_shape = (1, 1, 256) else: target_shape = (256, 1, 1) net['pool6_reshaped'] = Reshape(target_shape, name='pool6_reshaped')(net['pool6']) net['pool6_mbox_priorbox'] = priorbox(net['pool6_reshaped'])
    #好啦,到这里位置,所有的信息都已经生成了,下一步就是根据这些信息来进行训练或者是预测了。
    # Gather all predictions net['mbox_loc'] = merge([net['conv4_3_norm_mbox_loc_flat'], net['fc7_mbox_loc_flat'], net['conv6_2_mbox_loc_flat'], net['conv7_2_mbox_loc_flat'], net['conv8_2_mbox_loc_flat'], net['pool6_mbox_loc_flat']], mode='concat', concat_axis=1, name='mbox_loc') net['mbox_conf'] = merge([net['conv4_3_norm_mbox_conf_flat'], net['fc7_mbox_conf_flat'], net['conv6_2_mbox_conf_flat'], net['conv7_2_mbox_conf_flat'], net['conv8_2_mbox_conf_flat'], net['pool6_mbox_conf_flat']], mode='concat', concat_axis=1, name='mbox_conf') net['mbox_priorbox'] = merge([net['conv4_3_norm_mbox_priorbox'], net['fc7_mbox_priorbox'], net['conv6_2_mbox_priorbox'], net['conv7_2_mbox_priorbox'], net['conv8_2_mbox_priorbox'], net['pool6_mbox_priorbox']], mode='concat', concat_axis=1, name='mbox_priorbox') if hasattr(net['mbox_loc'], '_keras_shape'): num_boxes = net['mbox_loc']._keras_shape[-1] // 4 elif hasattr(net['mbox_loc'], 'int_shape'): num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4 net['mbox_loc'] = Reshape((num_boxes, 4), name='mbox_loc_final')(net['mbox_loc']) net['mbox_conf'] = Reshape((num_boxes, num_classes), name='mbox_conf_logits')(net['mbox_conf']) net['mbox_conf'] = Activation('softmax', name='mbox_conf_final')(net['mbox_conf']) net['predictions'] = merge([net['mbox_loc'], net['mbox_conf'], net['mbox_priorbox']], mode='concat', concat_axis=2, name='predictions') model = Model(net['input'], net['predictions'])
  • 相关阅读:
    SCILAB
    定积分的scilab程序
    4月26日科目一练习(96分)
    4月27日1科目一练习(90分)
    4月27日科目一练习(93分)
    4月12日科目一练习(91分)
    测试学习网站
    HttpWatch工具简介及使用技巧(转)
    Linux系统资源分析
    LoadRunner监控Linux服务器
  • 原文地址:https://www.cnblogs.com/andyniu/p/7469090.html
Copyright © 2020-2023  润新知