• Linux驱动之输入子系统简析


    输入子系统由驱动层、输入子系统核心、事件处理层三部分组成。一个输入事件,如鼠标移动、键盘按下等通过Driver->Inputcore->Event handler->userspace的顺序到达用户控件的应用程序。

                    系统框图

    假设打开一个字符设备驱动程序/dev/event0,event代表的是输入子系统的设备文件,当应用程序调用C库的open函数后,open函数会进入系统调用,最后定位到driversinputinput.c文件下(这个文件就是核心层)的。这个函数的功能主要是根据设备的次设备号找到新的fops结构,然后切换到新的fops结构,然后调用它的打开函数。输入子系统的主设备号恒为#define INPUT_MAJOR 13,定义在includelinuxmajor.h中。

    static int input_open_file(struct inode *inode, struct file *file)
    {
        struct input_handler *handler = input_table[iminor(inode) >> 5];//根据次设备号找到在input_table表中找到handler结构体
        const struct file_operations *old_fops, *new_fops = NULL;
        int err;
    
        /* No load-on-demand here? */
        if (!handler || !(new_fops = fops_get(handler->fops)))//判断handler结构体是否存在,存在的话将里面的fops变量赋给new_fops
            return -ENODEV;
    
        /*
         * That's _really_ odd. Usually NULL ->open means "nothing special",
         * not "no device". Oh, well...
         */
        if (!new_fops->open) {
            fops_put(new_fops);
            return -ENODEV;
        }
        old_fops = file->f_op;
        file->f_op = new_fops;//切换f_op变量,以后调用诸如read、write等系统调用时会进入到new_fops的read、write函数
    
        err = new_fops->open(inode, file);//调用new_fops的open函数
    
        if (err) {
            fops_put(file->f_op);
            file->f_op = fops_get(old_fops);
        }
        fops_put(old_fops);//释放掉老的fops结构
        return err;
    }

    接着先来看到input_table表的建立,可以看到它是一个静态变量,在本文件(driversinputinput.c)中搜索它,可以看到它位于input_register_handler函数,这是一个全局的函数,可以供外部的文件调用,这个函数的主要功能是注册一个handler结构体,这个结构体中存在minor这个设备的次设备号,这个结构所在的函数对应的其实就是上述的事件层

    int input_register_handler(struct input_handler *handler)
    {
        struct input_dev *dev;
    
        INIT_LIST_HEAD(&handler->h_list);//初始化handler的h_list结构体,这是一个双向链表
    
        if (handler->fops != NULL) {
            if (input_table[handler->minor >> 5])//检查是否已经存在这个次设备号的handler结构
                return -EBUSY;
    
            input_table[handler->minor >> 5] = handler;//将handler结构次设备号放入input_table表
        }
    
        list_add_tail(&handler->node, &input_handler_list);//将handler结构根据node成员放入input_handler_list链表
    
        list_for_each_entry(dev, &input_dev_list, node)//根据node这个成员在input_dev_list链表中循环查找dev结构
            input_attach_handler(dev, handler);//对于每一个dev结构调用input_attach_handler函数
    
        input_wakeup_procfs_readers();//将这个设备信息写入proc文件系统
        return 0;
    }

    接着搜索input_register_handler,抽取driversinputevdev.c这个文件,可以看到在这个模块的入口函数调用了注册函数

    static int __init evdev_init(void)
    {
        return input_register_handler(&evdev_handler);
    }

    接着看到evdev_handler这个结构体,在这个结构体里面找到了evdev_fops这个结构

    static struct input_handler evdev_handler = {
        .event =    evdev_event,
        .connect =    evdev_connect,
        .disconnect =    evdev_disconnect,
        .fops =        &evdev_fops,
        .minor =    EVDEV_MINOR_BASE,
        .name =        "evdev",
        .id_table =    evdev_ids,
    };

    接着看到evdev_fops结构体,可以看到应用层调用的read、write等函数在这里被定义

    static const struct file_operations evdev_fops = {
        .owner =    THIS_MODULE,
        .read =        evdev_read,
        .write =    evdev_write,
        .poll =        evdev_poll,
        .open =        evdev_open,
        .release =    evdev_release,
        .unlocked_ioctl = evdev_ioctl,
    #ifdef CONFIG_COMPAT
        .compat_ioctl =    evdev_ioctl_compat,
    #endif
        .fasync =    evdev_fasync,
        .flush =    evdev_flush
    };

    知道了事件层对应的位置,那么设备驱动层在哪里呢?接着往下看,回到input_register_handler函数,在里面看到如下语句,这句语句的作用是将事件层与驱动层联系起来。

    list_for_each_entry(dev, &input_dev_list, node)//根据node这个成员在input_dev_list链表中循环查找dev结构
            input_attach_handler(dev, handler);//对于每一个dev结构调用input_attach_handler函数

    这里可以看到一个新的结构体dev,先看一下dev结构体,它的原型为input_dev,跟抽取driversinputevdev.c这个文件一样,搜索input_dev这个结构体,先列出input_dev这个结构体

    struct input_dev {
    
        void *private;
    
        const char *name;
        const char *phys;
        const char *uniq;
        struct input_id id;
    
        unsigned long evbit[NBITS(EV_MAX)];
        unsigned long keybit[NBITS(KEY_MAX)];
        unsigned long relbit[NBITS(REL_MAX)];
        unsigned long absbit[NBITS(ABS_MAX)];
        unsigned long mscbit[NBITS(MSC_MAX)];
        unsigned long ledbit[NBITS(LED_MAX)];
        unsigned long sndbit[NBITS(SND_MAX)];
        unsigned long ffbit[NBITS(FF_MAX)];
        unsigned long swbit[NBITS(SW_MAX)];
    
        unsigned int keycodemax;
        unsigned int keycodesize;
        void *keycode;
        int (*setkeycode)(struct input_dev *dev, int scancode, int keycode);
        int (*getkeycode)(struct input_dev *dev, int scancode, int *keycode);
    
        struct ff_device *ff;
    
        unsigned int repeat_key;
        struct timer_list timer;
    
        int state;
    
        int sync;
    
        int abs[ABS_MAX + 1];
        int rep[REP_MAX + 1];
    
        unsigned long key[NBITS(KEY_MAX)];
        unsigned long led[NBITS(LED_MAX)];
        unsigned long snd[NBITS(SND_MAX)];
        unsigned long sw[NBITS(SW_MAX)];
    
        int absmax[ABS_MAX + 1];
        int absmin[ABS_MAX + 1];
        int absfuzz[ABS_MAX + 1];
        int absflat[ABS_MAX + 1];
    
        int (*open)(struct input_dev *dev);
        void (*close)(struct input_dev *dev);
        int (*flush)(struct input_dev *dev, struct file *file);
        int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value);
    
        struct input_handle *grab;
    
        struct mutex mutex;    /* serializes open and close operations */
        unsigned int users;
    
        struct class_device cdev;
        union {            /* temporarily so while we switching to struct device */
            struct device *parent;
        } dev;
    
        struct list_head    h_list;
        struct list_head    node;
    };

    接着看到driversinput abletkbtab.c这个文件,这个文件代表的就是设备驱动层,简单分析一下,可以看到它也是一个内核的模块,可以动态加载,一旦加载后,它会调用kbtab_init函数,最终会调用到kbtab_probe这个函数,可以看到最终又定位到了input_register_device这个注册设备的函数,它位于核心层,即driversinputinput.c文件下。

    static int kbtab_probe(struct usb_interface *intf, const struct usb_device_id *id)
    {
        ...
        ...
        input_dev = input_allocate_device();//分配一个input_dev 结构体
        if (!kbtab || !input_dev)
            goto fail1;
    
        ...
        ...
    
        input_dev->name = "KB Gear Tablet";//初始化input_dev 结构体
        input_dev->phys = kbtab->phys;
        usb_to_input_id(dev, &input_dev->id);
        input_dev->dev.parent = &intf->dev;
    
        input_set_drvdata(input_dev, kbtab);
    
        input_dev->open = kbtab_open;
        input_dev->close = kbtab_close;
    
        input_dev->evbit[0] |= BIT(EV_KEY) | BIT(EV_ABS) | BIT(EV_MSC);
        input_dev->keybit[LONG(BTN_LEFT)] |= BIT(BTN_LEFT) | BIT(BTN_RIGHT) | BIT(BTN_MIDDLE);
        input_dev->keybit[LONG(BTN_DIGI)] |= BIT(BTN_TOOL_PEN) | BIT(BTN_TOUCH);
        input_dev->mscbit[0] |= BIT(MSC_SERIAL);
        input_set_abs_params(input_dev, ABS_X, 0, 0x2000, 4, 0);
        input_set_abs_params(input_dev, ABS_Y, 0, 0x1750, 4, 0);
        input_set_abs_params(input_dev, ABS_PRESSURE, 0, 0xff, 0, 0);
    
        ...
        ...
    
        error = input_register_device(kbtab->dev);//注册input_dev结构体
        ...
        ...
    }

    接着看到input_register_device这个函数,它根input_register_handler相对应,前一个注册设备驱动层,后一个注册事件层。列出input_register_device函数,它同样位于driversinputinput.c文件中。

    int input_register_device(struct input_dev *dev)
    {
        static atomic_t input_no = ATOMIC_INIT(0);
        struct input_handler *handler;
        const char *path;
        int error;
    
        set_bit(EV_SYN, dev->evbit);//设置同步事件
    
        /*
         * If delay and period are pre-set by the driver, then autorepeating
         * is handled by the driver itself and we don't do it in input.c.
         */
    
        init_timer(&dev->timer);//初始化一个定时器
        if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {//按键是否需要重复,如果需要设置重复函数与重复时间
            dev->timer.data = (long) dev;
            dev->timer.function = input_repeat_key;
            dev->rep[REP_DELAY] = 250;
            dev->rep[REP_PERIOD] = 33;
        }
    
        if (!dev->getkeycode)
            dev->getkeycode = input_default_getkeycode;//获得按键值默认函数
    
        if (!dev->setkeycode)
            dev->setkeycode = input_default_setkeycode;//设置按键值默认函数
    
        list_add_tail(&dev->node, &input_dev_list);//将dev->node放入input_dev_list链表
    
        snprintf(dev->cdev.class_id, sizeof(dev->cdev.class_id),
             "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
    
        if (!dev->cdev.dev)
            dev->cdev.dev = dev->dev.parent;
    
        error = class_device_add(&dev->cdev);
        if (error)
            return error;
    
        path = kobject_get_path(&dev->cdev.kobj, GFP_KERNEL);
        printk(KERN_INFO "input: %s as %s
    ",
            dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
        kfree(path);
    
        list_for_each_entry(handler, &input_handler_list, node)//根据node这个成员在input_handler_list链表中循环查找handler结构
            input_attach_handler(dev, handler);//对于每一个handler结构调用input_attach_handler函数
    
        input_wakeup_procfs_readers();//将这个设备信息写入proc文件系统
    
        return 0;
    }

    可以看到它同样也调用了input_attach_handler函数,将设备驱动层事件层联系起来。这个函数也位于driversinputinput.c文件中。它的主要功能是

    1、根据handler->id_table的值匹配dev,找到id

    2、调用调用handler->connect进行匹配

    static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
    {
        const struct input_device_id *id;
        int error;
    
        if (handler->blacklist && input_match_device(handler->blacklist, dev))
            return -ENODEV;
    
        id = input_match_device(handler->id_table, dev);//根据handler->id_table的值匹配dev,找到id
        if (!id)
            return -ENODEV;
    
        error = handler->connect(handler, dev, id);//调用handler->connect进行匹配
        if (error && error != -ENODEV)
            printk(KERN_ERR
                "input: failed to attach handler %s to device %s, "
                "error: %d
    ",
                handler->name, kobject_name(&dev->cdev.kobj), error);
    
        return error;
    }

     接着看到input_match_device函数

    static const struct input_device_id *input_match_device(const struct input_device_id *id,
                                struct input_dev *dev)
    {
        int i;
    
        for (; id->flags || id->driver_info; id++) {//循环查找支持的id
    
            if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
                if (id->bustype != dev->id.bustype)
                    continue;
    
            if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
                if (id->vendor != dev->id.vendor)
                    continue;
    
            if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
                if (id->product != dev->id.product)
                    continue;
    
            if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
                if (id->version != dev->id.version)
                    continue;
    
            MATCH_BIT(evbit,  EV_MAX);//
            MATCH_BIT(keybit, KEY_MAX);
            MATCH_BIT(relbit, REL_MAX);
            MATCH_BIT(absbit, ABS_MAX);
            MATCH_BIT(mscbit, MSC_MAX);
            MATCH_BIT(ledbit, LED_MAX);
            MATCH_BIT(sndbit, SND_MAX);
            MATCH_BIT(ffbit,  FF_MAX);
            MATCH_BIT(swbit,  SW_MAX);
    
            return id;
        }
    
        return NULL;

    再看到handler->connect函数,这里选取的是evdev_handler ->evdev_connect函数,这个函数的主要作用就是将handle、handler、evdev三者相互匹配起来

    static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
                 const struct input_device_id *id)
    {
        struct evdev *evdev;
        struct class_device *cdev;
        dev_t devt;
        int minor;
        int error;
    
        for (minor = 0; minor < EVDEV_MINORS && evdev_table[minor]; minor++);//取得次设备号,如果还没有利用则evdev_table为空
        if (minor == EVDEV_MINORS) {
            printk(KERN_ERR "evdev: no more free evdev devices
    ");//没有剩余的空间可以用了
            return -ENFILE;
        }
    
        evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);//分配一个evdev
        if (!evdev)
            return -ENOMEM;
    
        INIT_LIST_HEAD(&evdev->client_list);
        init_waitqueue_head(&evdev->wait);
    
        evdev->exist = 1;                               //evdev初始化
        evdev->minor = minor;
        evdev->handle.dev = dev;                  //初始化evdev->handle.dev 
        evdev->handle.name = evdev->name;
        evdev->handle.handler = handler;       //初始化evdev->handle.handler
        evdev->handle.private = evdev;
        sprintf(evdev->name, "event%d", minor);//打印次设备号,每次注册新的设备驱动都会打印
    
        evdev_table[minor] = evdev;//将分配的evdev放入evdev_table[minor]
    
        devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor),
    
        cdev = class_device_create(&input_class, &dev->cdev, devt,
                       dev->cdev.dev, evdev->name);//创建一个字符设备节点
        if (IS_ERR(cdev)) {
            error = PTR_ERR(cdev);
            goto err_free_evdev;
        }
    
        /* temporary symlink to keep userspace happy */
        error = sysfs_create_link(&input_class.subsys.kobj,
                      &cdev->kobj, evdev->name);
        if (error)
            goto err_cdev_destroy;
    
        /*
          llist_add_tail(&handle->d_node, &handle->dev->h_list);//将&handle->d_node  放入&handle->dev->h_list链表
          list_add_tail(&handle->h_node, &handler->h_list);        //将&handle->h_node  放入 &handler->h_list链表?
        */
        error = input_register_handle(&evdev->handle);//注册evdev->handle   
        if (error)
            goto err_remove_link;
    
        return 0;
    
     err_remove_link:
        sysfs_remove_link(&input_class.subsys.kobj, evdev->name);
     err_cdev_destroy:
        class_device_destroy(&input_class, devt);
     err_free_evdev:
        kfree(evdev);
        evdev_table[minor] = NULL;
        return error;
    }

    再回过头来看一下应用层是怎么读取按键值得:应用层调用C库的read函数,通过前面的分析可以知道,最终会通过系统调用会定位到内核的evdev_handler ->fops ->evdev_read,下面看到evdev_read函数,它位于事件层,这个函数根据读取方式的不同采取不同的方式,如果是阻塞方式打开的话最终会当前进程放入等待队列,一直等到有数据才将进程唤醒。

    static ssize_t evdev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
    {
        struct evdev_client *client = file->private_data;
        struct evdev *evdev = client->evdev;
        int retval;
    
        if (count < evdev_event_size())
            return -EINVAL;
    
        if (client->head == client->tail && evdev->exist && (file->f_flags & O_NONBLOCK))//如果采用非阻塞方式读取,并且每天数据直接返回
            return -EAGAIN;
    
        retval = wait_event_interruptible(evdev->wait,
            client->head != client->tail || !evdev->exist);//阻塞方式读取,先将当前进程休眠,等待有数据后被唤醒
        if (retval)
            return retval;
    
        if (!evdev->exist)
            return -ENODEV;
    
        while (client->head != client->tail && retval + evdev_event_size() <= count) {//头!=尾表示有数据
    
            struct input_event *event = (struct input_event *) client->buffer + client->tail;
    
            if (evdev_event_to_user(buffer + retval, event))//将得到的数据考回给用户层
                return -EFAULT;
    
            client->tail = (client->tail + 1) & (EVDEV_BUFFER_SIZE - 1);
            retval += evdev_event_size();
        }
    
        return retval;
    }

    接下来的问题就是谁将进程唤醒,我们直接看到设备驱动层,即driversinput abletkbtab.c,在这个文件中有一个kbtab_irq函数,它是一个中断处理函数,它位于设备驱动层,负责将中断过来的按键数据上报调用的是input_report_key函数,input_report_key函数最终调用的是input_event函数,他们全部都属于核心层。接着看一下input_event的核心代码

    list_for_each_entry(handle, &dev->h_list, d_node)//根据dev设备驱动层的h_list找出handle结构体
                if (handle->open)
                    handle->handler->event(handle, type, code, value);//调用事件层的handle->handler->event进行处理

    再回过头看事件层的event,即evdev_event函数,可以看到在这个函数里将按键的相关的值取出后,最终进程的唤醒函数在这里调用wake_up_interruptible。

    static void evdev_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)
    {
        struct evdev *evdev = handle->private;
        struct evdev_client *client;
    
        if (evdev->grab) {
            client = evdev->grab;
    
            do_gettimeofday(&client->buffer[client->head].time);
            client->buffer[client->head].type = type;
            client->buffer[client->head].code = code;
            client->buffer[client->head].value = value;
            client->head = (client->head + 1) & (EVDEV_BUFFER_SIZE - 1);
    
            kill_fasync(&client->fasync, SIGIO, POLL_IN);
        } else
            list_for_each_entry(client, &evdev->client_list, node) {
    
                do_gettimeofday(&client->buffer[client->head].time);//时间              8字节
                client->buffer[client->head].type = type;                  //按键类型  2字节
                client->buffer[client->head].code = code;                 //按键码                2字节
                client->buffer[client->head].value = value;               //按键值,按下或松开        4字节
                client->head = (client->head + 1) & (EVDEV_BUFFER_SIZE - 1);
    
                kill_fasync(&client->fasync, SIGIO, POLL_IN);//异步通知
            }
    
        wake_up_interruptible(&evdev->wait);//唤醒进程
    }

    总结一下整个输入子系统的调用过程:

    app_open->input_open_file->evdev_open

    应用层         核心层                    事件层

    app_read->evdev_read->kbtab_irq->input_report_key->input_event->evdev_event->evdev_read

    应用层           事件层          设备层         核心层                   核心层            事件层          事件层

    如果要自己添加一个输入子系统的设备,只需要添加设备层的文件即可。

    1、在里面添加设备层input_dev结构并初始化

    2、编写中断处理程序

  • 相关阅读:
    无责任Windows Azure SDK .NET开发入门篇二[使用Azure AD 进行身份验证]
    无责任Windows Azure SDK .NET开发入门篇一[Windows Azure开发前准备工作]
    了解ASP.NET5 Web应用程序结构
    Hello ASP.NET5
    CentOS7 防火墙 firewall-cmd
    C# 中使用WebClient 请求 https
    使用 gridfs-stream 存储文件遇到的一个坑。
    overflow的几个坑
    IIS7启用静态压缩
    创建高性能移动 web 站点【转载】
  • 原文地址:https://www.cnblogs.com/andyfly/p/9486948.html
Copyright © 2020-2023  润新知