• matplotlib学习


    作图包

    图例网站

    https://matplotlib.org/gallery/index.html

    饼图

    代码:

    import matplotlib.pyplot as plt
    
    # Pie chart, where the slices will be ordered and plotted counter-clockwise:
    labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
    sizes = [15, 30, 45, 10]
    explode = (0, 0.1, 0, 0)  # only "explode" the 2nd slice (i.e. 'Hogs')
    
    fig1, ax1 = plt.subplots()
    ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
            shadow=True, startangle=90)
    ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
    
    plt.show()
    

      

    折线图

    import numpy as np
    #import matplotlib
    #matplotlib.use('Agg')
    
    import matplotlib.pyplot as plt
    
    # Fixing random state for reproducibility
    np.random.seed(19680801)
    
    
    fig, ax = plt.subplots()
    ax.plot(np.random.rand(20), '-o', ms=20, lw=2, alpha=0.7, mfc='orange')
    ax.grid()
    
    # position bottom right
    fig.text(0.95, 0.05, 'Property of MPL',
             fontsize=50, color='gray',
             ha='right', va='bottom', alpha=0.5)
    
    plt.show()
    

      

    条形图

    import numpy as np
    import matplotlib.pyplot as plt
    
    np.random.seed(19680801)
    
    n_bins = 10
    x = np.random.randn(1000, 3)
    
    fig, axes = plt.subplots(nrows=2, ncols=2)
    ax0, ax1, ax2, ax3 = axes.flatten()
    
    colors = ['red', 'tan', 'lime']
    ax0.hist(x, n_bins, density=True, histtype='bar', color=colors, label=colors)
    ax0.legend(prop={'size': 10})
    ax0.set_title('bars with legend')
    
    ax1.hist(x, n_bins, density=True, histtype='bar', stacked=True)
    ax1.set_title('stacked bar')
    
    ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False)
    ax2.set_title('stack step (unfilled)')
    
    # Make a multiple-histogram of data-sets with different length.
    x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]]
    ax3.hist(x_multi, n_bins, histtype='bar')
    ax3.set_title('different sample sizes')
    
    fig.tight_layout()
    plt.show()
    

      

    区域折线图

    import numpy as np
    import matplotlib.pyplot as plt
    
    x = [1, 2, 3, 4, 5]
    y1 = [1, 1, 2, 3, 5]
    y2 = [0, 4, 2, 6, 8]
    y3 = [1, 3, 5, 7, 9]
    
    y = np.vstack([y1, y2, y3])
    
    labels = ["Fibonacci ", "Evens", "Odds"]
    
    fig, ax = plt.subplots()
    ax.stackplot(x, y1, y2, y3, labels=labels)
    ax.legend(loc=2)
    plt.show()
    
    fig, ax = plt.subplots()
    ax.stackplot(x, y)
    plt.show()
    

      

  • 相关阅读:
    重新理解js的执行环境和闭包
    给开发插上想象力的翅膀
    Vue源码的初始化以及数据驱动逻辑
    解析Vue源码之前
    前端模块化发展介绍和未来展望
    现代前端框架具备的特征分析及Vue、React对比
    始于Flux的单项数据流发展简单介绍
    用面向对象编程解决常见需求场景
    【Docker】之重启容器相关命令
    【Java】之获取CSV文件数据以及获取Excel文件数据
  • 原文地址:https://www.cnblogs.com/andy9468/p/8564114.html
Copyright © 2020-2023  润新知