############### 迭代器 ##############
""" 迭代器 这是一个新的知识点 我们学习过的可以迭代的对象有哪些? list str dict 元组 文件 集合 range() enumerate 为什么可以被循环? """ print(dir([])) # dir可以查看这个数据类型所有的方法 """ ['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass_ _', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort'] """ # 双下滑线的方法,我们叫做双下方法, # 都是c语言写的,可以不只一个方式去使用 print([1].__add__([2])) print([1]+[2]) # 这两句是一样的, # 正常情况下不使用双下滑线的方法,就可以完成基本的功能了, # 这些数据类型可以被迭代是因为他们里面内置了一个双下方法,叫做 '__iter__',只要是能被for循环的数据类型都有这个方法, print([].__iter__()) # 列表调用了这个方法,就是返回了一个迭代器,<list_iterator object at 0x0000000001DEC048> list1 = [1,2,3,4] iterator = list1.__iter__() print(iterator.__next__()) # 这是读取下一个,一个一个的取值, # '__iter__',这是可迭代协议 # 迭代器协议,内部含有'__iter__',__next__(),这两个方法就是迭代器, from collections import Iterable from collections import Iterator print(isinstance([],Iterable)) # true print(isinstance([],Iterator)) # false 列表不是迭代器, # isinstance判断一个数据类型是不是第二个参数, class A: def __iter__(self):pass def __next__(self):pass a = A() print(isinstance(a,Iterable)) print(isinstance(a,Iterator)) # 由此可以证明,只有有__iter__',__next__(),这两个方法就是迭代器, ######################################################### """ 总结: 迭代器协议,要同时具有__iter__',__next__(),这两个方法就是迭代器,,可迭代的不一定是迭代器,因为要有next方法, 可迭代协议,只要能被for循环就是可迭代的,如果是迭代器一定是可迭代的,因为里面有iter方法, next方法可以一个一个取值,for循环就是使用迭代器, ##### 在工作中可能会遇到迭代器,你要认识, 第一种是明确告诉了你是一个 iterater,print([].__iter__()) ,<list_iterator object at 0x0000000001DEC048> 第二种就是range(10)这种就是一个迭代器, 只有是迭代器才可以被for循环,可以使用isinstance判断是否是一个迭代器, 迭代器的好处: 1,可以循环取值, 2,节省内存空间,比如 range(100000000), 这个还没有生成,没有在内存中生成,是一个一个给你的, list(range(100000000)),这个需要一次性生成,会消耗内存, 比如文件句柄,也是一个可迭代对象,可以一点一点的读取,一次性读取会内存爆掉, 迭代器很好,既能循环还能节省内存, 在工作中我们会遇到一些情况,不想直接在内存产生,想要一点点的产生,就要用到自己写迭代器 自己写的迭代器就是生成器, """
############### 生成器---生成器函数 ##############
""" 生成器 之前讲的iter方法和next方法,工作中基本不会用到,因为for循环已经做了这件事, 这是为了讲解迭代器的原理,还有就是为了生成器做铺垫, 生成器的本质还是迭代器,就是自己写的迭代器, 有两种方法写生成器 1,生成器函数 2,生成器表达式, """
第一种:生成器函数,
#生成器函数
# 1,只要有yield关键字的函数就是生成器函数,
# 2,yield只能写到函数里面,外边不能写,
# 3,yield不能和return共用
# def generator():
# print(1)
# yield "a"
#
# ret = generator()
# print(ret)
# <generator object generator at 0x0000000002256B48>
# 1,只要是生成器函数,调用函数会接收到一个生成器,函数内部的代码是不会执行的,
# 2,这个生成器也有__iter__(),__next__())两个方法,所以生成器也是一个迭代器,
# print(ret.__iter__())
# print(ret.__next__())
# 3,既然是迭代器我就可以使用next方法,这个next就是去执行函数内部的代码了,
def generator(): # 这是一个生成器函数,
print(1)
yield "a"
print(2)
yield "b"
g = generator() # 这是一个生成器
# print(g.__next__()) # 这一步会打印1,a
# print(g.__next__()) # 这一步会打印2,b,
# 1,yield不会把代码结束,return会把代码结束,
# 也可以进行for循环
for i in g:
print(i)
##############################################################
# 需求:生成200个娃哈哈,
def wahaha():
for i in range(2000000):
yield "娃哈哈%d"%i
g = wahaha()
# for i in g:
# print(i)
# 如果我想要50个怎么办?使用计数器
count = 0
for i in g:
count += 1
print(i)
if count >50:
break
# 还可以继续取值
print(g.__next__())
# 如果是列表,就不能继续取值,因为列表不是迭代器,是可迭代对象
#################################################################################
# 监听文件的输入,就是在文件输入一句,就打印一句
# def tail(filename):
# f = open(filename, encoding="utf-8")
# while True:
# line = f.readline()
# if line.strip():
# yield line.strip()
#
# t = tail("file")
#
# for i in t:
# # 拿到了这个i,就可以对它进行处理了,可以判断,可以前后加内容,
# print("***",i)
# print(i)
生成器函数进阶:
# 生成器函数进阶 def generator(): # 这是一个生成器函数, print(1) content = yield "a" print("######",content) print(2) yield "b" g = generator() print(g.__next__()) print(g.send("hello")) # send和获取下一个值的效果和next一样,但是可以再执行下一个yield的时候传递一个值, """ 1 a ###### hello 2 b 使用send的注意事项: 1,第一次使用生成器的时候,使用next获取下一个值, 2,最后一个yield,不能接收外部的值,如果你非要接收,那就要最后写一个yield,不需要有返回值, 使用next取值和for循环取值比较常用,send用的比较少,但是要知道,
"""
############### 生成器---生成器表达式 ##############
# 生成器表达式
# 列表推导式,
list1 = ["鸡蛋%d"%i for i in range(10)]
print(list1)
# 生成器表达式
g = (i for i in range(10))
# g是一个生成器,
# 和列表推导式的不同点
# 1,括号不一样,
# 2,返回值不一样,
# 生成器表达式几乎不占用内容,这是它的优点,缺点就是返回值还是一个表达式,取值需要第二步,
# 生成器表达式只能做简单的事情,想要复杂的功能的生成器还是生成器函数,
# 这些推导式你不会没有任何影响,使用for循环和生成器函数都能解决,只是面试的时候会有,别人的代码会有,所以你要掌握
#############################################
#############################################