• LinkedList(JDK1.8)源码分析


    双向循环链表
    双向循环链表和双向链表的不同在于,第一个节点的pre指向最后一个节点,最后一个节点的next指向第一个节点,也形成一个“环”。而LinkedList就是基于双向循环链表设计的。

    img

    LinkedList 的继承关系

    img

    LinkedList 是一个继承于AbstractSequentialList的双向循环链表。它也可以被当作堆栈、队列或双端队列进行操作。

    public class LinkedList<E>
        extends AbstractSequentialList<E>
        implements List<E>, Deque<E>, Cloneable, java.io.Serializable
    

    LinkedList 实现 List 接口,能对它进行队列操作。
    LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
    LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
    LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
    LinkedList 是非同步的。

    LinkedList属性:

    size:当前有多少个节点;

    first:第一个节点;

    last:最后一个节点;

    public class LinkedList<E>
        extends AbstractSequentialList<E>
        implements List<E>, Deque<E>, Cloneable, java.io.Serializable
    {
    	//list的元素数量
        transient int size = 0;
    
        /**
         *第一个节点
         */
        transient Node<E> first;
    
        /**
         * 最后一个节点
         */
        transient Node<E> last;
    

    LinkedList构造方法:

    ​ 空的构造方法:表示初始化的时候,size为默认值0;first和last为空;

    ​ 带入参的构造方法:

    1. this()调用默认无参构造方法;
    2. addAll()传进去入参的集合数据;
    3. 检查index索引范围 ;
    4. 得到集合数据
    5. 得到插入位置的前驱和后继节点
    6. 遍历数据,将数据插入到指定位置
     /**
         * 空构造函数
         */
        public LinkedList() {
        }
    
        /**
         *构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列
         */
        public LinkedList(Collection<? extends E> c) {
            this();
            addAll(c);
        }
    
     /**
         * 将集合从指定位置开始插入
         * 1. 检查index索引范围 
    	 * 2. 得到集合数据 
    	 * 3. 得到插入位置的前驱和后继节点 
         * 4. 遍历数据,将数据插入到指定位置
         */
        public boolean addAll(int index, Collection<? extends E> c) {
        	//检查index范围
            checkPositionIndex(index);
    		//得到集合的数据
            Object[] a = c.toArray();
            int numNew = a.length;
            if (numNew == 0)
                return false;
    		//得到插入位置的前驱节点和后继节点
            Node<E> pred, succ;
            //位置为尾部,前驱节点为last,后继节点为null
            if (index == size) {
                succ = null;
                pred = last;
            } else {
            //调用node()方法得到后继节点,再得到前驱节点
                succ = node(index);
                pred = succ.prev;
            }
    		//遍历数据将数据插入
            for (Object o : a) {
                @SuppressWarnings("unchecked") E e = (E) o;
                //创建新节点
                Node<E> newNode = new Node<>(pred, e, null);
                //前置节点为空,插入位置在链表头部
                if (pred == null)
                    first = newNode;
                else
                    pred.next = newNode;
                pred = newNode;
            }
    		//如果插入位置在尾部,重置last节点
            if (succ == null) {
                last = pred;
            } else {
            //否则,将插入的链表与先前链表连接起来
                pred.next = succ;
                succ.prev = pred;
            }
    
            size += numNew;
            modCount++;
            return true;
        }
    

    新增元素操作:

    /**
         *  将一个元素添加至list尾部
         */
        public boolean add(E e) {
            linkLast(e);
            return true;
        }
    

    指定位置添加元素:

    1. 检查index的范围,否则抛出异常
    2. 如果插入位置是链表尾部,那么调用linkLast方法
    3. 如果插入位置是链表中间,那么调用linkBefore方法
    /**
         * 指定位置添加元素
         *1. 检查index的范围,否则抛出异常 
    	 *2. 如果插入位置是链表尾部,那么调用linkLast方法 
    	 *3. 如果插入位置是链表中间,那么调用linkBefore方法
         */
        public void add(int index, E element) {
             //检查索引是否处于[0-size]之间
            checkPositionIndex(index);
    		//添加在链表尾部
            if (index == size)
                linkLast(element);
            else
            //添加在链表中间
                linkBefore(element, node(index));
        }
    

    linkBefore 非空节点前插入元素图示:

    检索操作总结:

    检索操作分为按照位置得到对象以及按照对象得到位置两种方式,其中按照对象得到位置的方法有indexOf()和lastIndexOf();按照位置得到对象有如下方法:

    • 根据任意位置得到数据的get(int index)方法,当index越界会抛出异常
    • 获得头节点数据
    • getFirst()和element()方法在链表为空时会抛出NoSuchElementException
    • peek()和peekFirst()方法在链表为空时会返回null
    • 获得尾节点数据
    • getLast()在链表为空时会抛出NoSuchElementException
    • peekLast()在链表为空时会返回null

    get方法:

     /**
         * 检索指定位置元素,索引越界,抛出异常
         */
        public E get(int index) {
            checkElementIndex(index);
            return node(index).item;
        }
    
        /**
         * 返回指定位置的非空节点
         */
        Node<E> node(int index) {
            // assert isElementIndex(index);
    		//如果索引位置靠链表前半部分,从头开始遍历
            if (index < (size >> 1)) {
                Node<E> x = first;
                for (int i = 0; i < index; i++)
                    x = x.next;
                return x;
            } else {
             //否则,从尾开始遍历
                Node<E> x = last;
                for (int i = size - 1; i > index; i--)
                    x = x.prev;
                return x;
            }
        }
    

    getFirst操作和getLast操作:

        /**
         * Returns the first element in this list.
         *
         * @return the first element in this list
         * @throws NoSuchElementException if this list is empty
         */
        public E getFirst() {
            final Node<E> f = first;
            if (f == null)
            //链表为null,抛出异常
                throw new NoSuchElementException();
            return f.item;
        }
    
        /**
         * 链表为空时,会抛出NoSuchElementException
         */
        public E getLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return l.item;
        }
    

    删除操作总结

    删除操作由很多种方法,有:

    • 按照指定对象删除:boolean remove(Object o),一次只会删除一个匹配的对象
    • 按照指定位置删除
    • 删除任意位置的对象:E remove(int index),当index越界时会抛出异常
    • 删除头节点位置的对象
    • 在链表为空时抛出异常:E remove()、E removeFirst()、E pop()
    • 在链表为空时返回null:E poll()、E pollFirst()
    • 删除尾节点位置的对象
    • 在链表为空时抛出异常:E removeLast()
    • 在链表为空时返回null:E pollLast()
    remove()方法:

    移除第一个节点,将第一个节点置空,让下一个节点变成第一个节点,链表长度减1,修改次数加1,返回移除的第一个节点。

    /**
         * 在链表为空时将抛出NoSuchElementException
         */
        public E remove() {
            return removeFirst();
        }
    

    removeFirst()方法:

      /**
         * Removes and returns the first element from this list.
         *
         * @return the first element from this list
         * @throws NoSuchElementException if this list is empty
         */
        public E removeFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return unlinkFirst(f);
        }
    
        /**
         * Unlinks non-null first node f.
         */
        private E unlinkFirst(Node<E> f) {
            // assert f == first && f != null;
            final E element = f.item;
            final Node<E> next = f.next;
            //第一个节点置空
            f.item = null;
            f.next = null; // help GC
            //下一个节点变成第一个节点
            first = next;
            if (next == null)
                last = null;
            else
                next.prev = null;
            //链表长度减1
            size--;
            //修改次数加1
            modCount++;
            return element;
        }
    
    remove(int index)方法:

    删除任意位置的元素,如果删除成功将返回true,否则返回false

      1. 检查index范围,属于[0,size)
      1. 将索引出节点删除
    /**
         * 删除任意位置的元素,如果删除成功将返回true,否则返回false
         * 1. 检查index范围,属于[0,size) 
    	 * 2. 将索引出节点删除
         */
        public E remove(int index) {
        //检查index范围
            checkElementIndex(index);
        //将节点删除    
            return unlink(node(index));
        }
    

    set方法:

     public E set(int index, E element) {
        //检查index是否越界
            checkElementIndex(index);
            //索引index位置的节点
            Node<E> x = node(index);
            //index位置的节点内容替换为element
            E oldVal = x.item;
            x.item = element;
            //返回原来旧的值
            return oldVal;
        }
    

    clear方法:

     public void clear() {
           //遍历链表,置空链表元素
            for (Node<E> x = first; x != null; ) {
                Node<E> next = x.next;
                x.item = null;
                x.next = null;
                x.prev = null;
                x = next;
            }
            first = last = null;
            //修改链表长度为0
            size = 0;
            //修改次数加一
            modCount++;
        }
    

    listIterator方法:

        /**
         * 在ListIterator的构造器中,得到了当前位置的节点,就是变量next。next()方法返回当前节点的值并将      *next指向其后继节点,previous()方法返回当前节点的前一个节点的值并将next节点指向其前驱节点。由于      *Node是一个双端节点,所以这儿用了一个节点就可以实现从前向后迭代和从后向前迭代。另外在                *ListIterator初始时,exceptedModCount保存了当前的modCount,如果在迭代期间,有操作改变了链表      *的底层结构,那么再操作迭代器的方法时将会抛出ConcurrentModificationException。
         */
        public ListIterator<E> listIterator(int index) {
            checkPositionIndex(index);
            return new ListItr(index);
        }
    

    LinkedList 源码解析:

    节点对象:

    /**
     *节点对象
     */
    private static class Node<E> {
    	// 当前存储元素
        E item;
        // 下一个元素节点
        Node<E> next;
        // 上一个元素节点
        Node<E> prev;
    
        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }
    
    package java.util;
    
    import java.util.function.Consumer;
    
    public class LinkedList<E>
        extends AbstractSequentialList<E>
        implements List<E>, Deque<E>, Cloneable, java.io.Serializable
    {
    	//list的元素数量
        transient int size = 0;
    
        /**
         *第一个节点
         */
        transient Node<E> first;
    
        /**
         * 最后一个节点
         */
        transient Node<E> last;
    
        /**
         * 空构造函数
         */
        public LinkedList() {
        }
    
        /**
         *构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列
         */
        public LinkedList(Collection<? extends E> c) {
            this();
            addAll(c);
        }
    
        /**
         * Links e as first element.
         */
        private void linkFirst(E e) {
            final Node<E> f = first;
            //新建节点,以头节点为后继节点
            final Node<E> newNode = new Node<>(null, e, f);
            first = newNode;
            //如果链表为空,last节点也指向该节点
            if (f == null)
                last = newNode;
            else
            //否则,将头节点的前驱指针指向新节点
                f.prev = newNode;
            size++;
            modCount++;
        }
    
        /**
         * Links e as last element.
         */
        void linkLast(E e) {
            //指向链表尾部
            final Node<E> l = last;
            //以尾部为前驱节点创建一个新节点
            final Node<E> newNode = new Node<>(l, e, null);
            //将链表尾部指向新节点
            last = newNode;
            //如果链表为空,那么该节点既是头节点也是尾节点
            if (l == null)
                first = newNode;
            else
                l.next = newNode;
            //增加集合大小
            size++;
            modCount++;
        }
    
        /**
         * 非空节点前插入元素
         * 1. 创建newNode节点,将newNode的后继指针指向succ,前驱指针指向pred 
    	 * 2. 将succ的前驱指针指向newNode 
         * 3. 根据pred是否为null,进行不同操作。 
         * - 如果pred为null,说明该节点插入在头节点之前,要重置first头节点 
         * - 如果pred不为null,那么直接将pred的后继指针指向newNode即可
         */
        void linkBefore(E e, Node<E> succ) {
            // assert succ != null;
            final Node<E> pred = succ.prev;
            final Node<E> newNode = new Node<>(pred, e, succ);
            succ.prev = newNode;
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            size++;
            modCount++;
        }
    
        /**
         * Unlinks non-null first node f.
         */
        private E unlinkFirst(Node<E> f) {
            // assert f == first && f != null;
            final E element = f.item;
            final Node<E> next = f.next;
            f.item = null;
            f.next = null; // help GC
            first = next;
            if (next == null)
                last = null;
            else
                next.prev = null;
            size--;
            modCount++;
            return element;
        }
    
        /**
         * Unlinks non-null last node l.
         */
        private E unlinkLast(Node<E> l) {
            // assert l == last && l != null;
            final E element = l.item;
            final Node<E> prev = l.prev;
            l.item = null;
            l.prev = null; // help GC
            last = prev;
            if (prev == null)
                first = null;
            else
                prev.next = null;
            size--;
            modCount++;
            return element;
        }
    
        /**
         * 从链表中移除元素
         * 1 得到待删除节点的前驱节点和后继节点
         * 2 删除前驱节点 
         * 3 删除后继节点
         */
        E unlink(Node<E> x) {
            // assert x != null;
            final E element = x.item;
            //后继节点
            final Node<E> next = x.next;
            //前驱节点
            final Node<E> prev = x.prev;
    		
    		//删除前驱指针
            if (prev == null) {
            //如果删除的节点是头节点,令头节点指向该节点的后继节点
                first = next;
            } else {
            //将前驱节点的后继节点指向后继节点
                prev.next = next;
                x.prev = null;
            }
    		
    		//删除后继指针
            if (next == null) {
            //如果删除的节点是尾节点,令尾节点指向该节点的前驱节点
                last = prev;
            } else {
                next.prev = prev;
                x.next = null;
            }
    
            x.item = null;
            size--;
            modCount++;
            return element;
        }
    
        /**
         * Returns the first element in this list.
         *
         * @return the first element in this list
         * @throws NoSuchElementException if this list is empty
         */
        public E getFirst() {
            final Node<E> f = first;
            if (f == null)
            //链表为null,抛出异常
                throw new NoSuchElementException();
            return f.item;
        }
    
        /**
         * 链表为空时,会抛出NoSuchElementException
         */
        public E getLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return l.item;
        }
    
        /**
         * Removes and returns the first element from this list.
         *
         * @return the first element from this list
         * @throws NoSuchElementException if this list is empty
         */
        public E removeFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return unlinkFirst(f);
        }
    
        /**
         * Removes and returns the last element from this list.
         *
         * @return the last element from this list
         * @throws NoSuchElementException if this list is empty
         */
        public E removeLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return unlinkLast(l);
        }
    
        /**
         *list头部添加指定元素
         */
        public void addFirst(E e) {
            linkFirst(e);
        }
    
        /**
         * 将元素添加到链表尾部,与add()方法一样。所以实现也一样
         */
        public void addLast(E e) {
            linkLast(e);
        }
    
        /**
         * 检查对象o是否存在于链表中
         */
        public boolean contains(Object o) {
            //返回结果不是-1,那就说明该对象存在于链表中
            return indexOf(o) != -1;
        }
    
        /**
         * Returns the number of elements in this list.
         *
         * @return the number of elements in this list
         */
        public int size() {
            return size;
        }
    
        /**
         *  将一个元素添加至list尾部
         */
        public boolean add(E e) {
            linkLast(e);
            return true;
        }
    
        /**
         * 删除指定元素
         */
        public boolean remove(Object o) {
        	//如果删除对象为null
            if (o == null) {
            	//从前向后遍历
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null) {
                        unlink(x);
                        return true;
                    }
                }
            } else {
             //从前向后遍历
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item)) {
                        unlink(x);
                        //匹配返回true
                        return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * 将集合插入到链表尾部,即开始索引位置为size
         */
        public boolean addAll(Collection<? extends E> c) {
            return addAll(size, c);
        }
    
        /**
         * 将集合从指定位置开始插入
         * 1. 检查index索引范围 
    	 * 2. 得到集合数据 
    	 * 3. 得到插入位置的前驱和后继节点 
         *4. 遍历数据,将数据插入到指定位置
         */
        public boolean addAll(int index, Collection<? extends E> c) {
        	//检查index范围
            checkPositionIndex(index);
    		//得到集合的数据
            Object[] a = c.toArray();
            int numNew = a.length;
            if (numNew == 0)
                return false;
    		//得到插入位置的前驱节点和后继节点
            Node<E> pred, succ;
            //位置为尾部,前驱节点为last,后继节点为null
            if (index == size) {
                succ = null;
                pred = last;
            } else {
            //调用node()方法得到后继节点,再得到前驱节点
                succ = node(index);
                pred = succ.prev;
            }
    		//遍历数据将数据插入
            for (Object o : a) {
                @SuppressWarnings("unchecked") E e = (E) o;
                //创建新节点
                Node<E> newNode = new Node<>(pred, e, null);
                //前置节点为空,插入位置在链表头部
                if (pred == null)
                    first = newNode;
                else
                    pred.next = newNode;
                pred = newNode;
            }
    		//如果插入位置在尾部,重置last节点
            if (succ == null) {
                last = pred;
            } else {
            //否则,将插入的链表与先前链表连接起来
                pred.next = succ;
                succ.prev = pred;
            }
    
            size += numNew;
            modCount++;
            return true;
        }
    
        
        public void clear() {
           //遍历链表,置空链表元素
            for (Node<E> x = first; x != null; ) {
                Node<E> next = x.next;
                x.item = null;
                x.next = null;
                x.prev = null;
                x = next;
            }
            first = last = null;
            //修改链表长度为0
            size = 0;
            //修改次数加一
            modCount++;
        }
    
        /**
         * 检索指定位置元素,索引越界,抛出异常
         */
        public E get(int index) {
            checkElementIndex(index);
            return node(index).item;
        }
    
       
        public E set(int index, E element) {
        //检查index是否越界
            checkElementIndex(index);
            //索引index位置的节点
            Node<E> x = node(index);
            //index位置的节点内容替换为element
            E oldVal = x.item;
            x.item = element;
            //返回原来旧的值
            return oldVal;
        }
    
        /**
         * 指定位置添加元素
         *1. 检查index的范围,否则抛出异常 
    	 *2. 如果插入位置是链表尾部,那么调用linkLast方法 
    	 *3. 如果插入位置是链表中间,那么调用linkBefore方法
         */
        public void add(int index, E element) {
             //检查索引是否处于[0-size]之间
            checkPositionIndex(index);
    		//添加在链表尾部
            if (index == size)
                linkLast(element);
            else
            //添加在链表中间
                linkBefore(element, node(index));
        }
    
        /**
         * 删除任意位置的元素,如果删除成功将返回true,否则返回false
         * 1. 检查index范围,属于[0,size) 
    	 * 2. 将索引出节点删除
         */
        public E remove(int index) {
        //检查index范围
            checkElementIndex(index);
        //将节点删除    
            return unlink(node(index));
        }
    
        /**
         * Tells if the argument is the index of an existing element.
         */
        private boolean isElementIndex(int index) {
            return index >= 0 && index < size;
        }
    
        /**
         * Tells if the argument is the index of a valid position for an
         * iterator or an add operation.
         */
        private boolean isPositionIndex(int index) {
            return index >= 0 && index <= size;
        }
    
        /**
         * Constructs an IndexOutOfBoundsException detail message.
         * Of the many possible refactorings of the error handling code,
         * this "outlining" performs best with both server and client VMs.
         */
        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+size;
        }
    
        private void checkElementIndex(int index) {
            if (!isElementIndex(index))
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        private void checkPositionIndex(int index) {
            if (!isPositionIndex(index))
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        /**
         * 返回指定位置的非空节点
         */
        Node<E> node(int index) {
            // assert isElementIndex(index);
    		//如果索引位置靠链表前半部分,从头开始遍历
            if (index < (size >> 1)) {
                Node<E> x = first;
                for (int i = 0; i < index; i++)
                    x = x.next;
                return x;
            } else {
             //否则,从尾开始遍历
                Node<E> x = last;
                for (int i = size - 1; i > index; i--)
                    x = x.prev;
                return x;
            }
        }
    
        // Search Operations
    
        /**
         *返回第一个匹配的索引
         */
        public int indexOf(Object o) {
            int index = 0;
            if (o == null) {
             //从头往后遍历,元素为空的时候的检索,此处可以观察到LinkedList是支持空元素的
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null)
                        return index;
                    index++;
                }
            } else {
              //从头往后遍历,元素不为空的时候的检索
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item))
                        return index;
                    index++;
                }
            }
            return -1;
        }
    
        /**
         *返回最后一个匹配的索引
         */
        public int lastIndexOf(Object o) {
            int index = size;
            if (o == null) {
            //从后向前遍历,元素为空,返回
                for (Node<E> x = last; x != null; x = x.prev) {
                    index--;
                    if (x.item == null)
                        return index;
                }
            } else {
             //从后向前遍历,元素不为空,匹配的情况下返回
                for (Node<E> x = last; x != null; x = x.prev) {
                    index--;
                    if (o.equals(x.item))
                        return index;
                }
            }
            return -1;
        }
    
        // Queue operations.
    
        /**
         * Retrieves, but does not remove, the head (first element) of this list.
         *
         * @return the head of this list, or {@code null} if this list is empty
         * @since 1.5
         */
        public E peek() {
            final Node<E> f = first;
            //不会抛出异常,但是会返回null
            return (f == null) ? null : f.item;
        }
    
        /**
         * Retrieves, but does not remove, the head (first element) of this list.
         *
         * @return the head of this list
         * @throws NoSuchElementException if this list is empty
         * @since 1.5
         */
        public E element() {
            return getFirst();
        }
    
        /**
         * 在链表为空时将返回null
         */
        public E poll() {
            final Node<E> f = first;
            return (f == null) ? null : unlinkFirst(f);
        }
    
        /**
         * 在链表为空时将抛出NoSuchElementException
         */
        public E remove() {
            return removeFirst();
        }
    
        /**
         * 将数据添加到链表尾部,其内部调用了add(E e)方法
         */
        public boolean offer(E e) {
            return add(e);
        }
    
        /**
         *将数据插入链表头部
         */
        public boolean offerFirst(E e) {
            addFirst(e);
            return true;
        }
    
        /**
         * 数据添加到链表尾部
         */
        public boolean offerLast(E e) {
            addLast(e);
            return true;
        }
    
        /**
         * Retrieves, but does not remove, the first element of this list,
         * or returns {@code null} if this list is empty.
         *
         * @return the first element of this list, or {@code null}
         *         if this list is empty
         * @since 1.6
         */
        public E peekFirst() {
            final Node<E> f = first;
            return (f == null) ? null : f.item;
         }
    
        /**
         * 为空,返回null,不会抛异常
         */
        public E peekLast() {
            final Node<E> l = last;
            return (l == null) ? null : l.item;
        }
    
        /**
         * Retrieves and removes the first element of this list,
         * or returns {@code null} if this list is empty.
         *
         * @return the first element of this list, or {@code null} if
         *     this list is empty
         * @since 1.6
         */
        public E pollFirst() {
            final Node<E> f = first;
            return (f == null) ? null : unlinkFirst(f);
        }
    
        /**
         * 链表为空时会返回null,而不是抛出异常
         */
        public E pollLast() {
            final Node<E> l = last;
            return (l == null) ? null : unlinkLast(l);
        }
    
        /**
         * Pushes an element onto the stack represented by this list.  In other
         * words, inserts the element at the front of this list.
         *
         * <p>This method is equivalent to {@link #addFirst}.
         *
         * @param e the element to push
         * @since 1.6
         */
        public void push(E e) {
            addFirst(e);
        }
    
        /**
         * 在链表为空时将抛出NoSuchElementException
         */
        public E pop() {
            return removeFirst();
        }
    
        /**
         * Removes the first occurrence of the specified element in this
         * list (when traversing the list from head to tail).  If the list
         * does not contain the element, it is unchanged.
         *
         * @param o element to be removed from this list, if present
         * @return {@code true} if the list contained the specified element
         * @since 1.6
         */
        public boolean removeFirstOccurrence(Object o) {
            return remove(o);
        }
    
        /**
         * 链表为空时将抛出NoSuchElementException
         */
        public boolean removeLastOccurrence(Object o) {
            if (o == null) {
                for (Node<E> x = last; x != null; x = x.prev) {
                    if (x.item == null) {
                        unlink(x);
                        return true;
                    }
                }
            } else {
                for (Node<E> x = last; x != null; x = x.prev) {
                    if (o.equals(x.item)) {
                        unlink(x);
                        return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * 在ListIterator的构造器中,得到了当前位置的节点,就是变量next。next()方法返回当前节点的值并将      *next指向其后继节点,previous()方法返回当前节点的前一个节点的值并将next节点指向其前驱节点。由于      *Node是一个双端节点,所以这儿用了一个节点就可以实现从前向后迭代和从后向前迭代。另外在                *ListIterator初始时,exceptedModCount保存了当前的modCount,如果在迭代期间,有操作改变了链表      *的底层结构,那么再操作迭代器的方法时将会抛出ConcurrentModificationException。
         */
        public ListIterator<E> listIterator(int index) {
            checkPositionIndex(index);
            return new ListItr(index);
        }
    
        private class ListItr implements ListIterator<E> {
            private Node<E> lastReturned;
            private Node<E> next;
            private int nextIndex;
            //保存当前modCount,确保fail-fast机制
            private int expectedModCount = modCount;
    
            ListItr(int index) {
                // assert isPositionIndex(index);
                //得到当前索引指向的next节点
                next = (index == size) ? null : node(index);
                nextIndex = index;
            }
    
            public boolean hasNext() {
                return nextIndex < size;
            }
    		/**
    		 *获取下一个节点
             */
            public E next() {
                checkForComodification();
                if (!hasNext())
                    throw new NoSuchElementException();
    
                lastReturned = next;
                next = next.next;
                nextIndex++;
                return lastReturned.item;
            }
    
            public boolean hasPrevious() {
                return nextIndex > 0;
            }
            
    		/**
    		 *获取前一个节点,将next节点向前移
    		 */
            public E previous() {
                checkForComodification();
                if (!hasPrevious())
                    throw new NoSuchElementException();
    
                lastReturned = next = (next == null) ? last : next.prev;
                nextIndex--;
                return lastReturned.item;
            }
    
            public int nextIndex() {
                return nextIndex;
            }
    
            public int previousIndex() {
                return nextIndex - 1;
            }
    
            public void remove() {
                checkForComodification();
                if (lastReturned == null)
                    throw new IllegalStateException();
    
                Node<E> lastNext = lastReturned.next;
                unlink(lastReturned);
                if (next == lastReturned)
                    next = lastNext;
                else
                    nextIndex--;
                lastReturned = null;
                expectedModCount++;
            }
    
            public void set(E e) {
                if (lastReturned == null)
                    throw new IllegalStateException();
                checkForComodification();
                lastReturned.item = e;
            }
    
            public void add(E e) {
                checkForComodification();
                lastReturned = null;
                if (next == null)
                    linkLast(e);
                else
                    linkBefore(e, next);
                nextIndex++;
                expectedModCount++;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                Objects.requireNonNull(action);
                while (modCount == expectedModCount && nextIndex < size) {
                    action.accept(next.item);
                    lastReturned = next;
                    next = next.next;
                    nextIndex++;
                }
                checkForComodification();
            }
    
            final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }
    	/**
    	 *节点对象
    	 */
        private static class Node<E> {
        	// 当前存储元素
            E item;
            // 下一个元素节点
            Node<E> next;
            // 上一个元素节点
            Node<E> prev;
    
            Node(Node<E> prev, E element, Node<E> next) {
                this.item = element;
                this.next = next;
                this.prev = prev;
            }
        }
    
        /**
         * @since 1.6
         */
        public Iterator<E> descendingIterator() {
            return new DescendingIterator();
        }
    
        /**
         * Adapter to provide descending iterators via ListItr.previous
         */
        private class DescendingIterator implements Iterator<E> {
            private final ListItr itr = new ListItr(size());
            public boolean hasNext() {
                return itr.hasPrevious();
            }
            public E next() {
                return itr.previous();
            }
            public void remove() {
                itr.remove();
            }
        }
    
        @SuppressWarnings("unchecked")
        private LinkedList<E> superClone() {
            try {
                return (LinkedList<E>) super.clone();
            } catch (CloneNotSupportedException e) {
                throw new InternalError(e);
            }
        }
    
        /**
         * Returns a shallow copy of this {@code LinkedList}. (The elements
         * themselves are not cloned.)
         *
         * @return a shallow copy of this {@code LinkedList} instance
         */
        public Object clone() {
            LinkedList<E> clone = superClone();
    
            // Put clone into "virgin" state
            clone.first = clone.last = null;
            clone.size = 0;
            clone.modCount = 0;
    
            // Initialize clone with our elements
            for (Node<E> x = first; x != null; x = x.next)
                clone.add(x.item);
    
            return clone;
        }
    
        /**
         * Returns an array containing all of the elements in this list
         * in proper sequence (from first to last element).
         *
         * <p>The returned array will be "safe" in that no references to it are
         * maintained by this list.  (In other words, this method must allocate
         * a new array).  The caller is thus free to modify the returned array.
         *
         * <p>This method acts as bridge between array-based and collection-based
         * APIs.
         *
         * @return an array containing all of the elements in this list
         *         in proper sequence
         */
        public Object[] toArray() {
            Object[] result = new Object[size];
            int i = 0;
            for (Node<E> x = first; x != null; x = x.next)
                result[i++] = x.item;
            return result;
        }
    
        /**
         * Returns an array containing all of the elements in this list in
         * proper sequence (from first to last element); the runtime type of
         * the returned array is that of the specified array.  If the list fits
         * in the specified array, it is returned therein.  Otherwise, a new
         * array is allocated with the runtime type of the specified array and
         * the size of this list.
         *
         * <p>If the list fits in the specified array with room to spare (i.e.,
         * the array has more elements than the list), the element in the array
         * immediately following the end of the list is set to {@code null}.
         * (This is useful in determining the length of the list <i>only</i> if
         * the caller knows that the list does not contain any null elements.)
         *
         * <p>Like the {@link #toArray()} method, this method acts as bridge between
         * array-based and collection-based APIs.  Further, this method allows
         * precise control over the runtime type of the output array, and may,
         * under certain circumstances, be used to save allocation costs.
         *
         * <p>Suppose {@code x} is a list known to contain only strings.
         * The following code can be used to dump the list into a newly
         * allocated array of {@code String}:
         *
         * <pre>
         *     String[] y = x.toArray(new String[0]);</pre>
         *
         * Note that {@code toArray(new Object[0])} is identical in function to
         * {@code toArray()}.
         *
         * @param a the array into which the elements of the list are to
         *          be stored, if it is big enough; otherwise, a new array of the
         *          same runtime type is allocated for this purpose.
         * @return an array containing the elements of the list
         * @throws ArrayStoreException if the runtime type of the specified array
         *         is not a supertype of the runtime type of every element in
         *         this list
         * @throws NullPointerException if the specified array is null
         */
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            if (a.length < size)
                a = (T[])java.lang.reflect.Array.newInstance(
                                    a.getClass().getComponentType(), size);
            int i = 0;
            Object[] result = a;
            for (Node<E> x = first; x != null; x = x.next)
                result[i++] = x.item;
    
            if (a.length > size)
                a[size] = null;
    
            return a;
        }
    
        private static final long serialVersionUID = 876323262645176354L;
    
        /**
         * Saves the state of this {@code LinkedList} instance to a stream
         * (that is, serializes it).
         *
         * @serialData The size of the list (the number of elements it
         *             contains) is emitted (int), followed by all of its
         *             elements (each an Object) in the proper order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
            // Write out any hidden serialization magic
            s.defaultWriteObject();
    
            // Write out size
            s.writeInt(size);
    
            // Write out all elements in the proper order.
            for (Node<E> x = first; x != null; x = x.next)
                s.writeObject(x.item);
        }
    
        /**
         * Reconstitutes this {@code LinkedList} instance from a stream
         * (that is, deserializes it).
         */
        @SuppressWarnings("unchecked")
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            // Read in any hidden serialization magic
            s.defaultReadObject();
    
            // Read in size
            int size = s.readInt();
    
            // Read in all elements in the proper order.
            for (int i = 0; i < size; i++)
                linkLast((E)s.readObject());
        }
    
        /**
         * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
         * and <em>fail-fast</em> {@link Spliterator} over the elements in this
         * list.
         *
         * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
         * {@link Spliterator#ORDERED}.  Overriding implementations should document
         * the reporting of additional characteristic values.
         *
         * @implNote
         * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
         * and implements {@code trySplit} to permit limited parallelism..
         *
         * @return a {@code Spliterator} over the elements in this list
         * @since 1.8
         */
        @Override
        public Spliterator<E> spliterator() {
            return new LLSpliterator<E>(this, -1, 0);
        }
    
        /** A customized variant of Spliterators.IteratorSpliterator */
        static final class LLSpliterator<E> implements Spliterator<E> {
            static final int BATCH_UNIT = 1 << 10;  // batch array size increment
            static final int MAX_BATCH = 1 << 25;  // max batch array size;
            final LinkedList<E> list; // null OK unless traversed
            Node<E> current;      // current node; null until initialized
            int est;              // size estimate; -1 until first needed
            int expectedModCount; // initialized when est set
            int batch;            // batch size for splits
    
            LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
                this.list = list;
                this.est = est;
                this.expectedModCount = expectedModCount;
            }
    
            final int getEst() {
                int s; // force initialization
                final LinkedList<E> lst;
                if ((s = est) < 0) {
                    if ((lst = list) == null)
                        s = est = 0;
                    else {
                        expectedModCount = lst.modCount;
                        current = lst.first;
                        s = est = lst.size;
                    }
                }
                return s;
            }
    
            public long estimateSize() { return (long) getEst(); }
    
            public Spliterator<E> trySplit() {
                Node<E> p;
                int s = getEst();
                if (s > 1 && (p = current) != null) {
                    int n = batch + BATCH_UNIT;
                    if (n > s)
                        n = s;
                    if (n > MAX_BATCH)
                        n = MAX_BATCH;
                    Object[] a = new Object[n];
                    int j = 0;
                    do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                    current = p;
                    batch = j;
                    est = s - j;
                    return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
                }
                return null;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                Node<E> p; int n;
                if (action == null) throw new NullPointerException();
                if ((n = getEst()) > 0 && (p = current) != null) {
                    current = null;
                    est = 0;
                    do {
                        E e = p.item;
                        p = p.next;
                        action.accept(e);
                    } while (p != null && --n > 0);
                }
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
    
            public boolean tryAdvance(Consumer<? super E> action) {
                Node<E> p;
                if (action == null) throw new NullPointerException();
                if (getEst() > 0 && (p = current) != null) {
                    --est;
                    E e = p.item;
                    current = p.next;
                    action.accept(e);
                    if (list.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
                return false;
            }
    
            public int characteristics() {
                return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
            }
        }
    
    }
    
  • 相关阅读:
    第一次Java测试及感触
    第七周学习
    第六周学习
    第5周学习
    第四周学习
    第三周学习
    浅略学习
    读完《大道至简》后的小感悟
    初识JAVA
    Java课后作业之石家庄地铁系统PSP表格20190403
  • 原文地址:https://www.cnblogs.com/androidsuperman/p/10254501.html
Copyright © 2020-2023  润新知