• mapreduce中使用python


    1.创建文件目录

    mkdir -p /opt/pyshell/mapreduce/

    2.新建mapper脚本

    vi /opt/pyshell/mapreduce/mapper.py

    #!/usr/bin/env python
    #coding=utf-8
    import sys
    
    for line in sys.stdin:
    	line=line.strip()
    	words=line.split()
    	for word in words:
    		print("{0}	{1}".format(word,1))
    
    

    3.新建reducer脚本

    vi /opt/pyshell/mapreduce/reducer.py

    #!/usr/bin/env python
    #coding=utf-8
    
    from operator import itemgetter
    import sys
    
    current_word = None
    current_count = 0
    word = None
    
    for line in sys.stdin:
        line = line.strip(' ')
        word, count = line.split('	', 1)
        try:
            count = int(count)
        except ValueError:  #count如果不是数字的话,直接忽略掉
            continue
        if current_word == word:
            current_count += count
        else:
            if current_word:
                print "%s	%s" % (current_word, current_count)
            current_count = count
            current_word = word
    
    if word == current_word:  #不要忘记最后的输出
        print "%s	%s" % (current_word, current_count)
    

    4.上传文件到hdsp

    hadoop fs -put /opt/data/*.txt /input

    5.启动yarn

    service yarn start

    参考 注册yarn为 chkconfig管理

    6.执行脚本

    cd /usr/apps/hadoop/hadoop-2.6.4/share/hadoop/tools/lib/
    
    hadoop jar hadoop-streaming-2.6.4.jar 
    -file /opt/pyshell/mapreduce/mapper.py     -mapper /opt/pyshell/mapreduce/mapper.py 
    -file /opt/pyshell/mapreduce/reducer.py    -reducer /opt/pyshell/mapreduce/reducer.py 
    -input /input/*    -output /output/out
    

    7.登陆yarn查看执行进度

    http://10.1.1.2:8088/

    参考
    https://www.cnblogs.com/kaituorensheng/p/3826114.html

  • 相关阅读:
    软件工程第四周进度总结
    djang-模型层(model)--添加,查询,修改
    django--模型层(ORM)-建表
    django---模板层
    django--MTV基础模型
    django--权限管理思路版
    django--权限管理day1
    django-超级管理员操作
    django-orm的表操作.
    django---查询操作
  • 原文地址:https://www.cnblogs.com/anbylau2130/p/13625850.html
Copyright © 2020-2023  润新知