搜了一下枚举的题 网上说这题特别经典 这是参考别人的代码,做个模板,运用二进制来保存棋盘,但一旦棋盘规模增大这种算法还是不行,再研究一下DFS的算法。
#include <iostream> #include <queue> using namespace std; int step[65535]; //记录步骤 bool flag[65535]; //防止重复搜索 unsigned short qState[65535]; //搜索的状态,正好可以用一个16位的无符号短整形表示 int rear = 0; //队列尾指针 int top = 0; //队列头指针 ///初始化:读入棋盘初始状态并把它转化为整数存入队列头,黑的位为1白的为0 void Init() { unsigned short temp = 0; char c; for(int i=0; i < 4; i++) for(int j = 0; j < 4; j++) { cin>>c; if('b' == c) temp |= (1<<(i*4+j)); } qState[rear++] = temp; flag[temp] = true; } ///翻转一个棋子并按规则对齐周围棋子附加影响 unsigned short move(unsigned short state, int i) { unsigned short temp=0; temp |= (1<<i); if((i+1)%4 != 0) //右,且不在最右边 temp |= (1<<(i+1)); if(i%4 != 0) //左,且不在最左边 temp |= (1<<(i-1)); if(i+4 < 16) //下 temp |= (1<<(i+4)); if(i-4 >= 0) //上 temp |= (1<<(i-4)); return (state ^ temp); } //广度优先搜索,从队列中循环取出状态,并把翻转16次(即所有情况),一旦发现满足要求的立即停止,否则加入队列 bool BFS() { while(rear > top) { unsigned short state = qState[top++]; //qState.pop(); for(int i=0; i < 16; i++) { unsigned short temp; temp = move(state,i); if(0 == state || 65535 == state) { cout<<step[state]; return true; } else if(!flag[temp]) //防止重复搜索 { //qState.push(temp); qState[rear++] = temp; flag[temp] = true; step[temp] = step[state]+1; } } } return false; } int main(void) { Init(); if(!BFS()) cout<<"Impossible"; char c; cin>>c; }