• 数据价值的4种常见定位


    数据价值的4种常见定位

    在日常工作中和数据产出中,数据价值的定位分为4种:数据管理、数据日常报表、数据专项挖掘分析、数据驱动。几乎所有企业的数据价值定位都脱离不了这4种,差异只是不同定位间的权重不同而已。


    1.数据管理

    数据管理工作包括:数据配置管理、数据权限管理、用户权限管理、数据导入管理、数据导出管理。

    数据配置管理。数据存储、安全、排除设置,并发控制、进程控制、结构控制等。

    数据权限管理。数据保存、新增、删除、更新、备份、合并、拆分、导出、打印等。

    用户权限管理。用户新增、删除、重置、过期设置、共享等。

    数据导入管理。数据导入格式、时间、条件、规则、异常处理、记录数、来源等。

    数据导出管理。数据导出格式、时间、条件、规则、记录数、加密、位置等。

    2.数据日常报表

    大多数的数据日常报表需要通过技术开发形成报表产品体系,以提供对日常业务的支持。当具有突发性事件或活动时,需要人工整理和汇总报表。完成日常报表后,通过自动发送邮件或短信、在线访问、离线客户端访问等形成接入数据。

    根据数据日常报表提供频率和周期的不同,报表可分为日报、周报、月报、季报、半年报和年报。报表的内容因公司需求而异,但基本框架是统计周期内企业各个运营环节KPI陈列、对比和简单分析,目的是通过周期性数据进行业务诊断,发现业务效果的趋势和异常点,为业务的优化执行提供基本支持。

    根据数据日常报表支持对象在企业内部分工的不同,日常报表可分为针对决策层的报表和针对执行层的报表。针对决策层的报表侧重于宏观的、整体的效果汇总和结果把脉,借助对比、趋势和主要维度下钻等方式进行初步分析并定位结论和问题点;针对执行层的报表侧重于微观的、个体的效果分析,各业务执行层只针对各自业务维度进行分析,并提供实际可行的操作型建议。

    对于数据指标的设定,既要包括公司核心结果指标如利润,又要包括各个业务节点的过程类或间接辅助类指标,以便更全面地评估和定性整体及各业务线的工作结果。

    3.数据专项挖掘分析

    数据专项挖掘分析是指针对某一特定课题或需求,采用专项分析或长期课题分析的形式对数据进行深入挖掘和分析,以提炼出相应结果或方法论供业务参考或使用。

    数据专项挖掘分析是数据发挥价值的重要手段,更是数据辅助支持作用的关键,大多数公司的数据工作意义都来源于此。

    为了提高数据工作的针对性,数据专项挖掘通常按业务模块划分,常见的数据专项挖掘分析模块包括市场分析、营销分析、网站分析(运营分析)、会员分析、用户体验分析、销售分析、移动分析、O2O分析等。不同分析模块课题依业务需求而定。

    4.数据驱动

    数据驱动是真正让数据从辅助角色转变为决定角色的唯一方式,但数据驱动通常在其他数据支持体系建立并完善后才进行考虑。

    第一,数据驱动需要成熟的数据方法论的支持,这些知识需要通过日常报表、专项挖掘分析等方式慢慢积累,即使外部引入的方法论也需要根据企业环境进行“定制开发”。

    第二,数据驱动需要企业内部具有需求环境。数据需要的前期以辅助决策类为主,第一步是“看”数据的需求,即数据报表;第二步是“查”数据的需求,即通过专项挖掘输出数据价值;第三步才是“用”数据的需求,即让数据自己决定业务方向。没有前两步做铺垫,第三步无法实现。

    第三,数据驱动需要较大的IT、人力、物力和财力投入,在数据工作前期,尤其在没有见到数据价值产出之前,企业盲目投入的风险性大。http://www.cda.cn/view/18813.html

  • 相关阅读:
    POJ 3261 Milk Patterns (求可重叠的k次最长重复子串)
    UVaLive 5031 Graph and Queries (Treap)
    Uva 11996 Jewel Magic (Splay)
    HYSBZ
    POJ 3580 SuperMemo (Splay 区间更新、翻转、循环右移,插入,删除,查询)
    HDU 1890 Robotic Sort (Splay 区间翻转)
    【转】ACM中java的使用
    HDU 4267 A Simple Problem with Integers (树状数组)
    POJ 1195 Mobile phones (二维树状数组)
    HDU 4417 Super Mario (树状数组/线段树)
  • 原文地址:https://www.cnblogs.com/amengduo/p/9587326.html
Copyright © 2020-2023  润新知