Python实现的计算马氏距离算法示例
本文实例讲述了Python实现的计算马氏距离算法。分享给大家供大家参考,具体如下:
我给写成函数调用了
python实现马氏距离源代码:
# encoding: utf-8
from __future__ import division
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import numpy as np
def mashi_distance(x,y):
print x
print y
#马氏距离要求样本数要大于维数,否则无法求协方差矩阵
#此处进行转置,表示10个样本,每个样本2维
X=np.vstack([x,y])
print X
XT=X.T
print XT
#方法一:根据公式求解
S=np.cov(X) #两个维度之间协方差矩阵
SI = np.linalg.inv(S) #协方差矩阵的逆矩阵
#马氏距离计算两个样本之间的距离,此处共有4个样本,两两组合,共有6个距离。
n=XT.shape[0]
d1=[]
for i in range(0,n):
for j in
range(i 1,n):
delta=XT[i]-XT[j]
d=np.sqrt(np.dot(np.dot(delta,SI),delta.T))
print d
d1.append(d)
if __name__ == '__main__':
# 第一列
x = [3, 5, 2, 8]
# 第二列
y = [4, 6, 2, 4]
mashi_distance(x,y)
运行结果: