数据结构
数据结构的概念很好理解,就是用来将数据组织在一起的结构。换句话说,数据结构是用来存储一系列关联数据的东西。在Python中有四种内建的数据结构,分别是List、Tuple、Dictionary以及Set。大部分的应用程序不需要其他类型的数据结构,但若是真需要也有很多高级数据结构可供选择,例如Collection、Array、Heapq、Bisect、Weakref、Copy以及Pprint。本文将介绍这些数据结构的用法,看看它们是如何帮助我们的应用程序的。
关于四种内建数据结构的使用方法很简单,并且网上有很多参考资料,因此本文将不会讨论它们。
1. Collections
collections模块包含了内建类型之外的一些有用的工具,例如Counter、defaultdict、OrderedDict、deque以及nametuple。其中Counter、deque以及defaultdict是最常用的类。
1.1 Counter()
如果你想统计一个单词在给定的序列中一共出现了多少次,诸如此类的操作就可以用到Counter。来看看如何统计一个list中出现的item次数:
from collections import Counter
li = ["Dog", "Cat", "Mouse", 42, "Dog", 42, "Cat", "Dog"]
a = Counter(li)
print a # Counter({'Dog': 3, 42: 2, 'Cat': 2, 'Mouse': 1})
若要统计一个list中不同单词的数目,可以这么用:
from collections import Counter
li = ["Dog", "Cat", "Mouse", 42, "Dog", 42, "Cat", "Dog"]
a = Counter(li)
print a # Counter({'Dog': 3, 42: 2, 'Cat': 2, 'Mouse': 1})
print len(set(li)) # 4
如果需要对结果进行分组,可以这么做:
from collections import Counter
li = ["Dog", "Cat", "Mouse","Dog","Cat", "Dog"]
a = Counter(li)
print a # Counter({'Dog': 3, 'Cat': 2, 'Mouse': 1})
print "{0} : {1}".format(a.values(),a.keys())
print(a.most_common(3)) # [('Dog', 3), ('Cat', 2), ('Mouse', 1)]
以下的代码片段找出一个字符串中出现频率最高的单词,并打印其出现次数。
import re
from collections import Counter
string = """
words = re.findall(r'w ', string) #This finds words in the document
lower_words = [word.lower() for word in words] #lower all the words
word_counts = Counter(lower_words) #counts the number each time a word appears
print word_counts
# Counter({'elit': 5, 'sed': 5, 'in': 5, 'adipiscing': 4, 'mollis': 4, 'eu': 3,
# 'id': 3, 'nunc': 3, 'consectetur': 3, 'non': 3, 'ipsum': 3, 'nulla': 3, 'pretium':
# 2, 'lacus': 2, 'ornare': 2, 'at': 2, 'praesent': 2, 'quis': 2, 'sit': 2, 'congue': 2, 'amet': 2,
# 'etiam': 2, 'urna': 2, 'a': 2, 'magna': 2, 'lorem': 2, 'aliquam': 2, 'ut': 2, 'ultricies': 2, 'mi': 2,
# 'dolor': 2, 'metus': 2, 'ac': 1, 'bibendum': 1, 'posuere': 1, 'enim': 1, 'ante': 1, 'sodales': 1, 'tellus': 1,
# 'vitae': 1, 'dui': 1, 'diam': 1, 'pellentesque': 1, 'massa': 1, 'vel': 1, 'nullam': 1, 'feugiat': 1, 'luctus': 1,
# 'pulvinar': 1, 'iaculis': 1, 'hendrerit': 1, 'orci': 1, 'turpis': 1, 'nibh': 1, 'scelerisque': 1, 'ullamcorper': 1,
# 'eget': 1, 'neque': 1, 'euismod': 1, 'curabitur': 1, 'leo': 1, 'sapien': 1, 'facilisi': 1, 'vestibulum': 1, 'nisi': 1,
# 'justo': 1, 'augue': 1, 'tempor': 1, 'lacinia': 1, 'malesuada': 1})
1.2 Deque
Deque是一种由队列结构扩展而来的双端队列(double-ended queue),队列元素能够在队列两端添加或删除。因此它还被称为头尾连接列表(head-tail linked list),尽管叫这个名字的还有另一个特殊的数据结构实现。
Deque支持线程安全的,经过优化的append和pop操作,在队列两端的相关操作都能够达到近乎O(1)的时间复杂度。虽然list也支持类似的操作,但是它是对定长列表的操作表现很不错,而当遇到pop(0)和insert(0, v)这样既改变了列表的长度又改变其元素位置的操作时,其复杂度就变为O(n)了。
来看看相关的比较结果:
import time
from collections import deque
num = 100000
def append(c):
def appendleft(c):
def pop(c):
def popleft(c):
for container in [deque, list]:
# Completed deque/append in 0.0250000953674 seconds: 3999984.74127 ops/sec
# Completed deque/appendleft in 0.0199999809265 seconds: 5000004.76838 ops/sec
# Completed deque/pop in 0.0209999084473 seconds: 4761925.52225 ops/sec
# Completed deque/popleft in 0.0199999809265 seconds: 5000004.76838 ops/sec
# Completed list/append in 0.0220000743866 seconds: 4545439.17637 ops/sec
# Completed list/appendleft in 21.3209998608 seconds: 4690.21155917 ops/sec
# Completed list/pop in 0.0240001678467 seconds: 4166637.52682 ops/sec
# Completed list/popleft in 4.01799988747 seconds: 24888.0046791 ops/sec
另一个例子是执行基本的队列操作:
from collections import deque
q = deque(range(5))
q.append(5)
q.appendleft(6)
print q
print q.pop()
print q.popleft()
print q.rotate(3)
print q
print q.rotate(-1)
print q
# deque([6, 0, 1, 2, 3, 4, 5])
# 5
# 6
# None
# deque([2, 3, 4, 0, 1])
# None
# deque([3, 4, 0, 1, 2])
译者注:rotate是队列的旋转操作,Right rotate(正参数)是将右端的元素移动到左端,而Left
rotate(负参数)则相反。
1.3 Defaultdict
这个类型除了在处理不存在的键的操作之外与普通的字典完全相同。当查找一个不存在的键操作发生时,它的default_factory会被调用,提供一个默认的值,并且将这对键值存储下来。其他的参数同普通的字典方法dict()一致,一个defaultdict的实例同内建dict一样拥有同样地操作。
defaultdict对象在当你希望使用它存放追踪数据的时候很有用。举个例子,假定你希望追踪一个单词在字符串中的位置,那么你可以这么做:
from collections import defaultdict
s = "the quick brown fox jumps over the lazy dog"
words = s.split()
location = defaultdict(list)
for m, n in enumerate(words):
print location
# defaultdict(, {'brown': [2], 'lazy': [7], 'over': [5], 'fox': [3],
# 'dog': [8], 'quick': [1], 'the': [0, 6], 'jumps': [4]})
是选择lists或sets与defaultdict搭配取决于你的目的,使用list能够保存你插入元素的顺序,而使用set则不关心元素插入顺序,它会帮助消除重复元素。
from collections import defaultdict
s = "the quick brown fox jumps over the lazy dog"
words = s.split()
location = defaultdict(set)
for m, n in enumerate(words):
print location
# defaultdict(, {'brown': set([2]), 'lazy': set([7]),
# 'over': set([5]), 'fox': set([3]), 'dog': set([8]), 'quick': set([1]),
# 'the': set([0, 6]), 'jumps': set([4])})
另一种创建multidict的方法:
s = "the quick brown fox jumps over the lazy dog"
d = {}
words = s.split()
for key, value in enumerate(words):
print d
# {0: ['the'], 1: ['quick'], 2: ['brown'], 3: ['fox'], 4: ['jumps'], 5: ['over'], 6: ['the'], 7: ['lazy'], 8: ['dog']}
一个更复杂的例子:
class Example(dict):
a = Example()
a[1][2][3] = 4
a[1][3][3] = 5
a[1][2]['test'] = 6
print a # {1: {2: {'test': 6, 3: 4}, 3: {3: 5}}}
2. Array
array模块定义了一个很像list的新对象类型,不同之处在于它限定了这个类型只能装一种类型的元素。array元素的类型是在创建并使用的时候确定的。
如果你的程序需要优化内存的使用,并且你确定你希望在list中存储的数据都是同样类型的,那么使用array模块很合适。举个例子,如果需要存储一千万个整数,如果用list,那么你至少需要160MB的存储空间,然而如果使用array,你只需要40MB。但虽然说能够节省空间,array上几乎没有什么基本操作能够比在list上更快。
在使用array进行计算的时候,需要特别注意那些创建list的操作。例如,使用列表推导式(list comprehension)的时候,会将array整个转换为list,使得存储空间膨胀。一个可行的替代方案是使用生成器表达式创建新的array。看代码:
import array
a = array.array("i", [1,2,3,4,5])
b = array.array(a.typecode, (2*x for x in a))
因为使用array是为了节省空间,所以更倾向于使用in-place操作。一种更高效的方法是使用enumerate:
import array
a = array.array("i", [1,2,3,4,5])
for i, x in enumerate(a):
对于较大的array,这种in-place修改能够比用生成器创建一个新的array至少提升15%的速度。
那么什么时候使用array呢?是当你在考虑计算的因素之外,还需要得到一个像C语言里一样统一元素类型的数组时。
import array
from timeit import Timer
def arraytest():
def enumeratetest():
if __name__=='__main__':
3.Heapq
heapq模块使用一个用堆实现的优先级队列。堆是一种简单的有序列表,并且置入了堆的相关规则。
堆是一种树形的数据结构,树上的子节点与父节点之间存在顺序关系。二叉堆(binary heap)能够用一个经过组织的列表或数组结构来标识,在这种结构中,元素N的子节点的序号为2*N 1和2*N 2(下标始于0)。简单来说,这个模块中的所有函数都假设序列是有序的,所以序列中的第一个元素(seq[0])是最小的,序列的其他部分构成一个二叉树,并且seq[i]节点的子节点分别为seq[2*i 1]以及seq[2*i 2]。当对序列进行修改时,相关函数总是确保子节点大于等于父节点。
import heapq
heap = []
for value in [20, 10, 30, 50, 40]:
while heap:
heapq模块有两个函数nlargest()和nsmallest(),顾名思义,让我们来看看它们的用法。
import heapq
nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]
两个函数也能够通过一个键参数使用更为复杂的数据结构,例如:
import heapq
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
print cheap
# [{'price': 16.35, 'name': 'YHOO', 'shares': 45},
# {'price': 21.09, 'name': 'FB', 'shares': 200}, {'price': 31.75, 'name': 'HPQ', 'shares': 35}]
print expensive
# [{'price': 543.22, 'name': 'AAPL', 'shares': 50}, {'price': 115.65, 'name': 'ACME',
# 'shares': 75}, {'price': 91.1, 'name': 'IBM', 'shares': 100}]
来看看如何实现一个根据给定优先级进行排序,并且每次pop操作都返回优先级最高的元素的队列例子。
import heapq
class Item:
class PriorityQueue:
q = PriorityQueue()
q.push(Item('foo'), 1)
q.push(Item('bar'), 5)
q.push(Item('spam'), 4)
q.push(Item('grok'), 1)
print q.pop() # Item('bar')
print q.pop() # Item('spam')
print q.pop() # Item('foo')
print q.pop() # Item('grok')
4. Bisect
bisect模块能够提供保持list元素序列的支持。它使用了二分法完成大部分的工作。它在向一个list插入元素的同时维持list是有序的。在某些情况下,这比重复的对一个list进行排序更为高效,并且对于一个较大的list来说,对每步操作维持其有序也比对其排序要高效。
假设你有一个range集合:
a = [(0, 100), (150, 220), (500, 1000)]
如果我想添加一个range (250, 400),我可能会这么做:
import bisect
a = [(0, 100), (150, 220), (500, 1000)]
bisect.insort_right(a, (250,400))
print a # [(0, 100), (150, 220), (250, 400), (500, 1000)]
我们可以使用bisect()函数来寻找插入点:
import bisect
a = [(0, 100), (150, 220), (500, 1000)]
bisect.insort_right(a, (250,400))
bisect.insort_right(a, (399, 450))
print a # [(0, 100), (150, 220), (250, 400), (500, 1000)]
print bisect.bisect(a, (550, 1200)) # 5
bisect(sequence, item) => index 返回元素应该的插入点,但序列并不被修改。
import bisect
a = [(0, 100), (150, 220), (500, 1000)]
bisect.insort_right(a, (250,400))
bisect.insort_right(a, (399, 450))
print a # [(0, 100), (150, 220), (250, 400), (500, 1000)]
print bisect.bisect(a, (550, 1200)) # 5
bisect.insort_right(a, (550, 1200))
print a # [(0, 100), (150, 220), (250, 400), (399, 450), (500, 1000), (550, 1200)]
新元素被插入到第5的位置。
5. Weakref
weakref模块能够帮助我们创建Python引用,却不会阻止对象的销毁操作。这一节包含了weak reference的基本用法,并且引入一个代理类。
在开始之前,我们需要明白什么是strong reference。strong reference是一个对对象的引用次数、生命周期以及销毁时机产生影响的指针。strong reference如你所见,就是当你将一个对象赋值给一个变量的时候产生的:
>>> a = [1,2,3]
>>> b = a
在这种情况下,这个列表有两个strong reference,分别是a和b。在这两个引用都被释放之前,这个list不会被销毁。
class Foo(object):
a = Foo() # created
b = a
del a
del b # destroyed
Weak reference则是对对象的引用计数器不会产生影响。当一个对象存在weak reference时,并不会影响对象的撤销。这就说,如果一个对象仅剩下weak reference,那么它将会被销毁。
你可以使用weakref.ref函数来创建对象的weak reference。这个函数调用需要将一个strong reference作为第一个参数传给函数,并且返回一个weak reference。
>>> import weakref
>>> a = Foo()
created
>>> b = weakref.ref(a)
>>> b
一个临时的strong reference可以从weak reference中创建,即是下例中的b():
>>> a == b()
True
>>> b().show()
None
请注意当我们删除strong reference的时候,对象将立即被销毁。
>>> del a
destroyed
如果试图在对象被摧毁之后通过weak reference使用对象,则会返回None:
>>> b() is None
True
若是使用weakref.proxy,就能提供相对于weakref.ref更透明的可选操作。同样是使用一个strong reference作为第一个参数并且返回一个weak reference,proxy更像是一个strong reference,但当对象不存在时会抛出异常。