• Flink自定义sink到db,es,redis,kafka


    package utils
    
    import java.net.{InetAddress, InetSocketAddress}
    import java.sql.{Connection, DriverManager, PreparedStatement}
    import java.util
    import java.util.Properties
    
    import org.apache.flink.api.common.functions.RuntimeContext
    import org.apache.flink.api.common.serialization.SimpleStringSchema
    import org.apache.flink.configuration.Configuration
    import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
    import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
    import org.apache.flink.streaming.connectors.elasticsearch5.ElasticsearchSink
    import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010
    import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper
    import org.apache.flink.streaming.connectors.redis.RedisSink
    import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig
    import org.apache.flink.streaming.connectors.redis.common.mapper.{RedisCommand, RedisCommandDescription, RedisMapper}
    import org.elasticsearch.action.index.IndexRequest
    import org.elasticsearch.client.Requests
    
    /**
      * Author: risen
      * Date: 2019/7/25 9:45
      * Desc: flink 流式处理的sink工具类(es,db,redis,kafka)
      */
    object FlinkStreamSinkUtils {
    
      //flink 流式处理到es中,注意其中端口号为9300
      def streamSinkEs(clusterName:String,hosts:String,esPort:String,esIndex:String): ElasticsearchSink[util.HashMap[String,String]] ={
        val esConfig = new util.HashMap[String,String]
        esConfig.put("cluster.name", clusterName)
        esConfig.put("bulk.flush.max.actions", "1")
        //1、用来表示是否开启重试机制
        esConfig.put("bulk.flush.backoff.enable", "true")
        //2、重试策略,又可以分为以下两种类型
        //a、指数型,表示多次重试之间的时间间隔按照指数方式进行增长。eg:2 -> 4 -> 8 ...
        //esConfig.put("bulk.flush.backoff.type", "EXPONENTIAL");
        //b、常数型,表示多次重试之间的时间间隔为固定常数。eg:2 -> 2 -> 2 ...
        esConfig.put("bulk.flush.backoff.type", "CONSTANT")
        //3、进行重试的时间间隔。对于指数型则表示起始的基数
        esConfig.put("bulk.flush.backoff.delay", "2")
        //4、失败重试的次数
        esConfig.put("bulk.flush.backoff.retries", "3")
        //如果是集群可以用逗号分隔来实现连接
        val transportAddresses = new util.ArrayList[InetSocketAddress]
        for(host <- hosts.split(",")){
          transportAddresses.add(new InetSocketAddress(InetAddress.getByName(host), esPort.toInt))
        }
        new ElasticsearchSink(esConfig, transportAddresses, new ElasticsearchSinkFunction[util.HashMap[String,String]] {
    
          //实现es逻辑操作增删改查
          def createIndexRequest(dataMap: util.HashMap[String,String]): IndexRequest = {
            //接受到的信息作为一个字符串处理(这里的不一定用string传入,传入类型取决于DataStream的类型)
            val esType = dataMap.get("es_type")
            val esId = dataMap.get("es_id")
            dataMap.remove("es_type")
            dataMap.remove("es_id")
            Requests.indexRequest().index(esIndex).`type`(esType).source(dataMap).id(esId)
          }
          override def process(t: util.HashMap[String,String], runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
            requestIndexer.add(createIndexRequest(t))
          }
        })
      }
    
      //flink 流式处理到redis中
      def streamSinkRedis(redisHost:String,redisPort:String): RedisSink[(String,String)] ={
        val jedisPoolConfig = new FlinkJedisPoolConfig.Builder().setHost(redisHost).setPort(redisPort.toInt).build()
        new RedisSink[(String, String)](jedisPoolConfig,new MyRedisMapper())
      }
    
      //flink 流式处理到kafka中
      def streamSinkKafka(topicName:String,brokerList:String,groupId:String): FlinkKafkaProducer010[String] ={
        val properties = new Properties()
        properties.setProperty("bootstrap.servers",brokerList)
        properties.setProperty("group.id",groupId)
        new FlinkKafkaProducer010[String](topicName,new KeyedSerializationSchemaWrapper[String](new SimpleStringSchema()),properties)
      }
    
      //flink 流式处理到数据库中
      def streamSinkDB(classDriverName:String,jdbcUrl:String,username:String,password:String,sql:String):MyDbMapper ={
        new MyDbMapper(classDriverName,jdbcUrl,username,password,sql)
      }
    }
    
    //实现redisMapper
    class MyRedisMapper extends RedisMapper[Tuple2[String,String]]{
      override def getCommandDescription: RedisCommandDescription = {
        new RedisCommandDescription(RedisCommand.LPUSH)
      }
      override def getKeyFromData(data: (String, String)): String = data._1
    
      override def getValueFromData(data: (String, String)): String = data._2
    }
    
    //实现RichSinkFunction
    class MyDbMapper(classDriverName:String,jdbcUrl:String,username:String,password:String,sql:String) extends RichSinkFunction[util.HashMap[Integer,Object]]{
      var conn: Connection = _
      var pres:PreparedStatement = _
      override def open(parameters: Configuration): Unit = {
        Class.forName(classDriverName)
        conn = DriverManager.getConnection(jdbcUrl, username, password)
        pres = conn.prepareStatement(sql)
        super.close()
      }
    
      override def invoke(dataMap: util.HashMap[Integer,Object], context: SinkFunction.Context[_]): Unit = {
        import scala.collection.JavaConversions._
        for (index <- dataMap.keySet()){
          val value = dataMap.get(index)
          pres.setObject(index,value)
        }
        println(dataMap.values())
        pres.executeUpdate()
      }
      override def close(): Unit = {
        conn.close()
        pres.close()
      }
    }
    
    
    狭路相逢勇者胜!
  • 相关阅读:
    561. Array Partition I
    448. Find All Numbers Disappeared in an Array
    136. Single Number
    485. Max Consecutive Ones
    463. Island Perimeter
    496. Next Greater Element I
    344. Reverse String
    【.net项目中。。】.net一般处理程序使用方法
    【ExtAspNet学习笔记】ExtAspNet控件库中常见问题
    用VS2010创建三层架构开发模式及三层架构的研究
  • 原文地址:https://www.cnblogs.com/amcoder/p/13919480.html
Copyright © 2020-2023  润新知