• Event Recommendation Engine Challenge分步解析第四步


    一、请知晓

     本文是基于:

      Event Recommendation Engine Challenge分步解析第一步

      Event Recommendation Engine Challenge分步解析第二步

      Event Recommendation Engine Challenge分步解析第三步

     需要读者先阅读前三篇文章解析

    二、构建event和event相似度数据

     我们先看看events.csv.gz:

    import pandas as pd
    df_events_csv = pd.read_csv('events.csv.gz', compression='gzip')
    df_events_csv.head()

     代码实例结果:

      文件记录了用户对某event的信息(c_100后面还有一列:c_101):

     我们来看看如何对上面表中的列信息进行数值转换

     1)start_time:参考Event Recommendation Engine Challenge分步解析第二步4)中的joinedAt列处理

     

     2)city,3)state,4)zip,5)country列处理都利用了hashlib包:注意这里处理event信息的时候,只有那些出现在train.csv和test.csv中的event才会进入数值转换程序

    import hashlib
    def FeatureHash(value):
            if len(value.strip()) == 0:
                return -1
            else:
                return int( hashlib.sha224(value.encode('utf-8')).hexdigest()[0:4] ,16)
    
    print(FeatureHash('Muaraenim'))#47294
    print(FeatureHash('a test demo'))#4030
    

      所以,我们在对NA值进行填充或者多种字符串进行数值转换的时候,使用hashlib也是一个不错的选择

     6),lat和7)lon列处理:

    def getFloatValue(self, value):
        if len(value.strip()) == 0:
            return 0.0
        else:
            return float(value)

      空值用0.0填充,其他转换为自身的float

     8)c_1之后列(也就是第10列之后)处理:

      这里用了一个矩阵eventContMatrix来保存c_1到c_100列信息,但是没有用的c_other列,why?

     9)将eventPropMatrix和eventContMatrix矩阵归一化后进行文件保存

     10)根据第一步中的uniqueEventPairs来计算event pairs相似度

      利用了scipy.spatial.distancecorrelationcosine方法

     11)变量介绍

      nevents:events数目,即train.csvtest.csv总共多少个events,13418个

      self.eventPropMatrix:稀疏矩阵,shape为(13418,7),7代表events.csv.gz中的7列特征,最后进行了归一化

      self.eventContMatrix:稀疏矩阵,shape为(13418,100),100代表events.csv.gz文件中的c_1c_100特征,最后进行了归一化

      self.eventPropSim:由user-event行为计算出来的event pair相似度,需要用到第一步中的uniqueEventPairs

    import pandas as pd
    pd.DataFrame(eventPropSim)
    

      代码示例结果:

      self.eventContSim:由event本身的信息计算出的event pair相似度,需要用到第一步中的uniqueEventPairs

    import pandas as pd
    pd.DataFrame(eventContSim)
    

      代码示例结果:

     12)我们来看看第四步代码

    from collections import defaultdict
    import locale, pycountry
    import scipy.sparse as ss
    import scipy.io as sio
    import itertools
    #import cPickle
    #From python3, cPickle has beed replaced by _pickle
    import _pickle as cPickle
    
    import scipy.spatial.distance as ssd
    import datetime
    from sklearn.preprocessing import normalize
    
    import gzip
    import numpy as np
    
    import hashlib
    
    #处理user和event关联数据
    class ProgramEntities:
        """
        我们只关心train和test中出现的user和event,因此重点处理这部分关联数据,
        经过统计:train和test中总共3391个users和13418个events
        """
        def __init__(self):
            #统计训练集中有多少独立的用户的events
            uniqueUsers = set()#uniqueUsers保存总共多少个用户:3391个
            uniqueEvents = set()#uniqueEvents保存总共多少个events:13418个
            eventsForUser = defaultdict(set)#字典eventsForUser保存了每个user:所对应的event
            usersForEvent = defaultdict(set)#字典usersForEvent保存了每个event:哪些user点击
            for filename in ['train.csv', 'test.csv']:
                f = open(filename)
                f.readline()#跳过第一行
                for line in f:
                    cols = line.strip().split(',')
                    uniqueUsers.add( cols[0] )
                    uniqueEvents.add( cols[1] )
                    eventsForUser[cols[0]].add( cols[1] )
                    usersForEvent[cols[1]].add( cols[0] )
                f.close()
            
            self.userEventScores = ss.dok_matrix( ( len(uniqueUsers), len(uniqueEvents) ) )
            self.userIndex = dict()
            self.eventIndex = dict()
            for i, u in enumerate(uniqueUsers):
                self.userIndex[u] = i
            for i, e in enumerate(uniqueEvents):
                self.eventIndex[e] = i
                
            ftrain = open('train.csv')
            ftrain.readline()
            for line in ftrain:
                cols = line.strip().split(',')
                i = self.userIndex[ cols[0] ]
                j = self.eventIndex[ cols[1] ]
                self.userEventScores[i, j] = int( cols[4] ) - int( cols[5] )
            ftrain.close()
            sio.mmwrite('PE_userEventScores', self.userEventScores)
            
            #为了防止不必要的计算,我们找出来所有关联的用户或者关联的event
            #所谓关联用户指的是至少在同一个event上有行为的用户user pair
            #关联的event指的是至少同一个user有行为的event pair
            self.uniqueUserPairs = set()
            self.uniqueEventPairs = set()
            for event in uniqueEvents:
                users = usersForEvent[event]
                if len(users) > 2:
                    self.uniqueUserPairs.update( itertools.combinations(users, 2) )
            for user in uniqueUsers:
                events = eventsForUser[user]
                if len(events) > 2:
                    self.uniqueEventPairs.update( itertools.combinations(events, 2) )
            #rint(self.userIndex)
            cPickle.dump( self.userIndex, open('PE_userIndex.pkl', 'wb'))
            cPickle.dump( self.eventIndex, open('PE_eventIndex.pkl', 'wb') )
            
    
    #数据清洗类
    class DataCleaner:
        def __init__(self):
            #一些字符串转数值的方法
            #载入locale
            self.localeIdMap = defaultdict(int)
            
            for i, l in enumerate(locale.locale_alias.keys()):
                self.localeIdMap[l] = i + 1
                
            #载入country
            self.countryIdMap = defaultdict(int)
            ctryIdx = defaultdict(int)
            for i, c in enumerate(pycountry.countries):
                self.countryIdMap[c.name.lower()] = i + 1
                if c.name.lower() == 'usa':
                    ctryIdx['US'] = i
                if c.name.lower() == 'canada':
                    ctryIdx['CA'] = i
                
            for cc in ctryIdx.keys():
                for s in pycountry.subdivisions.get(country_code=cc):
                    self.countryIdMap[s.name.lower()] = ctryIdx[cc] + 1
                    
            self.genderIdMap = defaultdict(int, {'male':1, 'female':2})
                    
        #处理LocaleId
        def getLocaleId(self, locstr):
            #这样因为localeIdMap是defaultdict(int),如果key中没有locstr.lower(),就会返回默认int 0
            return self.localeIdMap[ locstr.lower() ]
            
        #处理birthyear
        def getBirthYearInt(self, birthYear):
            try:
                return 0 if birthYear == 'None' else int(birthYear)
            except:
                return 0
                
        #性别处理
        def getGenderId(self, genderStr):
            return self.genderIdMap[genderStr]
            
        #joinedAt
        def getJoinedYearMonth(self, dateString):
            dttm = datetime.datetime.strptime(dateString, "%Y-%m-%dT%H:%M:%S.%fZ")
            return "".join( [str(dttm.year), str(dttm.month) ] )
            
        #处理location
        def getCountryId(self, location):
            if (isinstance( location, str)) and len(location.strip()) > 0 and location.rfind('  ') > -1:
                return self.countryIdMap[ location[location.rindex('  ') + 2: ].lower() ]
            else:
                return 0
                        
        #处理timezone
        def getTimezoneInt(self, timezone):
            try:
                return int(timezone)
            except:
                return 0
            
        def getFeatureHash(self, value):
            if len(value.strip()) == 0:
                return -1
            else:
                #return int( hashlib.sha224(value).hexdigest()[0:4], 16) python3会报如下错误
                #TypeError: Unicode-objects must be encoded before hashing
                return int( hashlib.sha224(value.encode('utf-8')).hexdigest()[0:4], 16)#python必须先进行encode
        
        def getFloatValue(self, value):
            if len(value.strip()) == 0:
                return 0.0
            else:
                return float(value)
                
    
    #用户与用户相似度矩阵
    class Users:
        """
        构建user/user相似度矩阵
        """
        def __init__(self, programEntities, sim=ssd.correlation):#spatial.distance.correlation(u, v) #计算向量u和v之间的相关系数
            cleaner = DataCleaner()
            nusers = len(programEntities.userIndex.keys())#3391
            #print(nusers)
            fin = open('users.csv')
            colnames = fin.readline().strip().split(',') #7列特征
            self.userMatrix = ss.dok_matrix( (nusers, len(colnames)-1 ) )#构建稀疏矩阵
            for line in fin:
                cols = line.strip().split(',')
                #只考虑train.csv中出现的用户,这一行是作者注释上的,但是我不是很理解
                #userIndex包含了train和test的所有用户,为何说只考虑train.csv中出现的用户
                if cols[0] in programEntities.userIndex:
                    i = programEntities.userIndex[ cols[0] ]#获取user:对应的index
                    self.userMatrix[i, 0] = cleaner.getLocaleId( cols[1] )#locale
                    self.userMatrix[i, 1] = cleaner.getBirthYearInt( cols[2] )#birthyear,空值0填充
                    self.userMatrix[i, 2] = cleaner.getGenderId( cols[3] )#处理性别
                    self.userMatrix[i, 3] = cleaner.getJoinedYearMonth( cols[4] )#处理joinedAt列
                    self.userMatrix[i, 4] = cleaner.getCountryId( cols[5] )#处理location
                    self.userMatrix[i, 5] = cleaner.getTimezoneInt( cols[6] )#处理timezone
            fin.close()
            
            #归一化矩阵
            self.userMatrix = normalize(self.userMatrix, norm='l1', axis=0, copy=False)
            sio.mmwrite('US_userMatrix', self.userMatrix)
            
            #计算用户相似度矩阵,之后会用到
            self.userSimMatrix = ss.dok_matrix( (nusers, nusers) )#(3391,3391)
            for i in range(0, nusers):
                self.userSimMatrix[i, i] = 1.0
            
            for u1, u2 in programEntities.uniqueUserPairs:
                i = programEntities.userIndex[u1]
                j = programEntities.userIndex[u2]
                if (i, j) not in self.userSimMatrix:
                    #print(self.userMatrix.getrow(i).todense()) 如[[0.00028123,0.00029847,0.00043592,0.00035208,0,0.00032346]]
                    #print(self.userMatrix.getrow(j).todense()) 如[[0.00028123,0.00029742,0.00043592,0.00035208,0,-0.00032346]]
                    usim = sim(self.userMatrix.getrow(i).todense(),self.userMatrix.getrow(j).todense())
                    self.userSimMatrix[i, j] = usim
                    self.userSimMatrix[j, i] = usim
            sio.mmwrite('US_userSimMatrix', self.userSimMatrix)
    
    
    #用户社交关系挖掘
    class UserFriends:
        """
        找出某用户的那些朋友,想法非常简单
        1)如果你有更多的朋友,可能你性格外向,更容易参加各种活动
        2)如果你朋友会参加某个活动,可能你也会跟随去参加一下
        """
        def __init__(self, programEntities):
            nusers = len(programEntities.userIndex.keys())#3391
            self.numFriends = np.zeros( (nusers) )#array([0., 0., 0., ..., 0., 0., 0.]),保存每一个用户的朋友数
            self.userFriends = ss.dok_matrix( (nusers, nusers) )
            fin = gzip.open('user_friends.csv.gz')
            print( 'Header In User_friends.csv.gz:',fin.readline() )
            ln = 0
            #逐行打开user_friends.csv.gz文件
            #判断第一列的user是否在userIndex中,只有user在userIndex中才是我们关心的user
            #获取该用户的Index,和朋友数目
            #对于该用户的每一个朋友,如果朋友也在userIndex中,获取其朋友的userIndex,然后去userEventScores中获取该朋友对每个events的反应
            #score即为该朋友对所有events的平均分
            #userFriends矩阵记录了用户和朋友之间的score
            #如851286067:1750用户出现在test.csv中,该用户在User_friends.csv.gz中一共2151个朋友
            #那么其朋友占比应该是2151 / 总的朋友数sumNumFriends=3731377.0 = 2151 / 3731377 = 0.0005764627910822198
            for line in fin:
                if ln % 200 == 0:
                    print( 'Loading line:', ln )
                cols = line.decode().strip().split(',')
                user = cols[0]
                if user in programEntities.userIndex:
                    friends = cols[1].split(' ')#获得该用户的朋友列表
                    i = programEntities.userIndex[user]
                    self.numFriends[i] = len(friends)
                    for friend in friends:
                        if friend in programEntities.userIndex:
                            j = programEntities.userIndex[friend]
                            #the objective of this score is to infer the degree to
                            #and direction in which this friend will influence the
                            #user's decision, so we sum the user/event score for
                            #this user across all training events
                            eventsForUser = programEntities.userEventScores.getrow(j).todense()#获取朋友对每个events的反应:0, 1, or -1
                            #print(eventsForUser.sum(), np.shape(eventsForUser)[1] )
                            #socre即是用户朋友在13418个events上的平均分
                            score = eventsForUser.sum() / np.shape(eventsForUser)[1]#eventsForUser = 13418,
                            #print(score)
                            self.userFriends[i, j] += score
                            self.userFriends[j, i] += score
                ln += 1
            fin.close()
            #归一化数组
            sumNumFriends = self.numFriends.sum(axis=0)#每个用户的朋友数相加
            #print(sumNumFriends)
            self.numFriends = self.numFriends / sumNumFriends#每个user的朋友数目比例
            sio.mmwrite('UF_numFriends', np.matrix(self.numFriends) )
            self.userFriends = normalize(self.userFriends, norm='l1', axis=0, copy=False)
            sio.mmwrite('UF_userFriends', self.userFriends)
        
    
            
    #构造event和event相似度数据
    class Events:
        """
        构建event-event相似度,注意这里有2种相似度
        1)由用户-event行为,类似协同过滤算出的相似度
        2)由event本身的内容(event信息)计算出的event-event相似度
        """
        def __init__(self, programEntities, psim=ssd.correlation, csim=ssd.cosine):
            cleaner = DataCleaner()
            fin = gzip.open('events.csv.gz')
            fin.readline()#skip header
            nevents = len(programEntities.eventIndex)
            print(nevents)#13418
            self.eventPropMatrix = ss.dok_matrix( (nevents, 7) )
            self.eventContMatrix = ss.dok_matrix( (nevents, 100) )
            ln = 0
            for line in fin:
                #if ln > 10:
                    #break
                cols = line.decode().strip().split(',')
                eventId = cols[0]
                if eventId in programEntities.eventIndex:
                    i = programEntities.eventIndex[eventId]
                    self.eventPropMatrix[i, 0] = cleaner.getJoinedYearMonth( cols[2] )#start_time
                    self.eventPropMatrix[i, 1] = cleaner.getFeatureHash( cols[3] )#city
                    self.eventPropMatrix[i, 2] = cleaner.getFeatureHash( cols[4] )#state
                    self.eventPropMatrix[i, 3] = cleaner.getFeatureHash( cols[5] )#zip
                    self.eventPropMatrix[i, 4] = cleaner.getFeatureHash( cols[6] )#country
                    self.eventPropMatrix[i, 5] = cleaner.getFloatValue( cols[7] )#lat
                    self.eventPropMatrix[i, 6] = cleaner.getFloatValue( cols[8] )#lon
                    for j in range(9, 109):
                        self.eventContMatrix[i, j-9] = cols[j]
                    
                ln += 1
            fin.close()
            
            self.eventPropMatrix = normalize(self.eventPropMatrix, norm='l1', axis=0, copy=False)
            sio.mmwrite('EV_eventPropMatrix', self.eventPropMatrix)
            self.eventContMatrix = normalize(self.eventContMatrix, norm='l1', axis=0, copy=False)
            sio.mmwrite('EV_eventContMatrix', self.eventContMatrix)
            
            #calculate similarity between event pairs based on the two matrices
            self.eventPropSim = ss.dok_matrix( (nevents, nevents) )
            self.eventContSim = ss.dok_matrix( (nevents, nevents) )
            for e1, e2 in programEntities.uniqueEventPairs:
                i = programEntities.eventIndex[e1]
                j = programEntities.eventIndex[e2]
                if not ((i, j) in self.eventPropSim):
                    epsim = psim( self.eventPropMatrix.getrow(i).todense(), self.eventPropMatrix.getrow(j).todense())
                    self.eventPropSim[i, j] = epsim
                    self.eventPropSim[j, i] = epsim
                    
                if not ((i, j) in self.eventContSim):
                    ecsim = csim( self.eventContMatrix.getrow(i).todense(), self.eventContMatrix.getrow(j).todense())
                    self.eventContSim[i, j] = ecsim
                    self.eventContSim[j, i] = ecsim
                    
            sio.mmwrite('EV_eventPropSim', self.eventPropSim)
            sio.mmwrite('EV_eventContSim', self.eventContSim)
    
            
    print('第1步:统计user和event相关信息...')
    pe = ProgramEntities()
    print('第1步完成...
    ')
    
    print('第2步:计算用户相似度信息,并用矩阵形式存储...')
    #Users(pe)
    print('第2步完成...
    ')
    
    print('第3步:计算用户社交关系信息,并存储...')
    UserFriends(pe)
    print('第3步完成...
    ')
    
    print('第4步:计算event相似度信息,并用矩阵形式存储...')
    Events(pe)
    print('第4步完成...
    ')
    

      

     至此,第四步完成,哪里有不明白的请留言

     我们来看看Event Recommendation Engine Challenge分步解析第五步

  • 相关阅读:
    asp.net实现bt和pt协议—torrent
    asp.net实现bt和pt协议bencode
    asp.net实现bt和pt—tracker response
    asp.net实现bt和pt——邪恶篇:PtCheater
    自我介绍
    [转载]直接保存Matlab图像到PPT文件
    中断过程与主程序调用子程序过程的比较
    [转载]转贴:大学电子类专业学生忠告
    2010年10月26日
    [转载]win7命令大全
  • 原文地址:https://www.cnblogs.com/always-fight/p/10497546.html
Copyright © 2020-2023  润新知