• Event Recommendation Engine Challenge分步解析第三步


    一、请知晓

     本文是基于:

      Event Recommendation Engine Challenge分步解析第一步

      Event Recommendation Engine Challenge分步解析第二步

     需要读者先阅读前两篇文章解析

    二、用户社交关系信息处理

     这一步需要user_friends.csv.gz文件,我们先来看看文件内容:

    import pandas as pd
    df_user_friends = pd.read_csv('user_friends.csv.gz', compression='gzip')
    df_user_friends.head()

     代码示例结果(发现该记录了用户的所有朋友信息):

     1)变量解释

      nusers:train.csvtest.csv文件涉及的所有用户数目,3391

      self.numFriends:一维向量,每个元素记录了(3391个)每个用户的朋友数目,然后除以总的朋友数(sumNumFriends),得到每个用户的朋友占比

    import scipy.io as sio
    import pandas as pd
    numFriends = sio.mmread('UF_numFriends')
    pd.DataFrame(numFriends)

      代码示例结果:

     

      self.userFriends:稀疏矩阵,shape为(3391,3391),记录每个用户与其朋友的score矩阵,最后归一化

    import scipy.io as sio
    import pandas as pd
    userFriends = sio.mmread('UF_userFriends').todense()
    pd.DataFrame(userFriends)

      代码示例结果:

     

      userEventScores:临时变量,记录某个用户的某个朋友对每个event的兴趣分(1,0,or -1)

      sumNumFriends:每个用户的朋友数相加之和

     

     2)记录对user_friends.csv.gz文件操作

      逐行读取user_friends.csv.gz文件

        如果用户在第一步userIndex中,获取该用户的朋友数目,并保存在self.numFriends中

          对于该用户每一个朋友,只操作存在于第一步userIndex中的朋友

            获得该朋友的Index,利用该index去操作第一步中的userEventScores,这个userEventScores记录了每个用户对每个event的兴趣分(1,0,or -1),这样我们就获得了该用户的该朋友对每个event的兴趣分,

            并求得该用户的该朋友的平均兴趣分(对每个event的兴趣分和除以总得event数-13481)

     

     3)有了上面对user_friends.csv.gz文件操作说明,我们来看看完整代码

    from collections import defaultdict
    import locale, pycountry
    import scipy.sparse as ss
    import scipy.io as sio
    import itertools
    #import cPickle
    #From python3, cPickle has beed replaced by _pickle
    import _pickle as cPickle
    
    import scipy.spatial.distance as ssd
    import datetime
    from sklearn.preprocessing import normalize
    
    import gzip
    import numpy as np
    
    #处理user和event关联数据
    class ProgramEntities:
        """
        我们只关心train和test中出现的user和event,因此重点处理这部分关联数据,
        经过统计:train和test中总共3391个users和13418个events
        """
        def __init__(self):
            #统计训练集中有多少独立的用户的events
            uniqueUsers = set()#uniqueUsers保存总共多少个用户:3391个
            uniqueEvents = set()#uniqueEvents保存总共多少个events:13418个
            eventsForUser = defaultdict(set)#字典eventsForUser保存了每个user:所对应的event
            usersForEvent = defaultdict(set)#字典usersForEvent保存了每个event:哪些user点击
            for filename in ['train.csv', 'test.csv']:
                f = open(filename)
                f.readline()#跳过第一行
                for line in f:
                    cols = line.strip().split(',')
                    uniqueUsers.add( cols[0] )
                    uniqueEvents.add( cols[1] )
                    eventsForUser[cols[0]].add( cols[1] )
                    usersForEvent[cols[1]].add( cols[0] )
                f.close()
            
            self.userEventScores = ss.dok_matrix( ( len(uniqueUsers), len(uniqueEvents) ) )
            self.userIndex = dict()
            self.eventIndex = dict()
            for i, u in enumerate(uniqueUsers):
                self.userIndex[u] = i
            for i, e in enumerate(uniqueEvents):
                self.eventIndex[e] = i
                
            ftrain = open('train.csv')
            ftrain.readline()
            for line in ftrain:
                cols = line.strip().split(',')
                i = self.userIndex[ cols[0] ]
                j = self.eventIndex[ cols[1] ]
                self.userEventScores[i, j] = int( cols[4] ) - int( cols[5] )
            ftrain.close()
            sio.mmwrite('PE_userEventScores', self.userEventScores)
            
            #为了防止不必要的计算,我们找出来所有关联的用户或者关联的event
            #所谓关联用户指的是至少在同一个event上有行为的用户user pair
            #关联的event指的是至少同一个user有行为的event pair
            self.uniqueUserPairs = set()
            self.uniqueEventPairs = set()
            for event in uniqueEvents:
                users = usersForEvent[event]
                if len(users) > 2:
                    self.uniqueUserPairs.update( itertools.combinations(users, 2) )
            for user in uniqueUsers:
                events = eventsForUser[user]
                if len(events) > 2:
                    self.uniqueEventPairs.update( itertools.combinations(events, 2) )
            #rint(self.userIndex)
            cPickle.dump( self.userIndex, open('PE_userIndex.pkl', 'wb'))
            cPickle.dump( self.eventIndex, open('PE_eventIndex.pkl', 'wb') )
            
    
    #数据清洗类
    class DataCleaner:
        def __init__(self):
            #一些字符串转数值的方法
            #载入locale
            self.localeIdMap = defaultdict(int)
            
            for i, l in enumerate(locale.locale_alias.keys()):
                self.localeIdMap[l] = i + 1
                
            #载入country
            self.countryIdMap = defaultdict(int)
            ctryIdx = defaultdict(int)
            for i, c in enumerate(pycountry.countries):
                self.countryIdMap[c.name.lower()] = i + 1
                if c.name.lower() == 'usa':
                    ctryIdx['US'] = i
                if c.name.lower() == 'canada':
                    ctryIdx['CA'] = i
                
            for cc in ctryIdx.keys():
                for s in pycountry.subdivisions.get(country_code=cc):
                    self.countryIdMap[s.name.lower()] = ctryIdx[cc] + 1
                    
            self.genderIdMap = defaultdict(int, {'male':1, 'female':2})
                    
        #处理LocaleId
        def getLocaleId(self, locstr):
            #这样因为localeIdMap是defaultdict(int),如果key中没有locstr.lower(),就会返回默认int 0
            return self.localeIdMap[ locstr.lower() ]
            
        #处理birthyear
        def getBirthYearInt(self, birthYear):
            try:
                return 0 if birthYear == 'None' else int(birthYear)
            except:
                return 0
                
        #性别处理
        def getGenderId(self, genderStr):
            return self.genderIdMap[genderStr]
            
        #joinedAt
        def getJoinedYearMonth(self, dateString):
            dttm = datetime.datetime.strptime(dateString, "%Y-%m-%dT%H:%M:%S.%fZ")
            return "".join( [str(dttm.year), str(dttm.month) ] )
            
        #处理location
        def getCountryId(self, location):
            if (isinstance( location, str)) and len(location.strip()) > 0 and location.rfind('  ') > -1:
                return self.countryIdMap[ location[location.rindex('  ') + 2: ].lower() ]
            else:
                return 0
                        
        #处理timezone
        def getTimezoneInt(self, timezone):
            try:
                return int(timezone)
            except:
                return 0
    
    #用户与用户相似度矩阵
    class Users:
        """
        构建user/user相似度矩阵
        """
        def __init__(self, programEntities, sim=ssd.correlation):#spatial.distance.correlation(u, v) #计算向量u和v之间的相关系数
            cleaner = DataCleaner()
            nusers = len(programEntities.userIndex.keys())#3391
            #print(nusers)
            fin = open('users.csv')
            colnames = fin.readline().strip().split(',') #7列特征
            self.userMatrix = ss.dok_matrix( (nusers, len(colnames)-1 ) )#构建稀疏矩阵
            for line in fin:
                cols = line.strip().split(',')
                #只考虑train.csv中出现的用户,这一行是作者注释上的,但是我不是很理解
                #userIndex包含了train和test的所有用户,为何说只考虑train.csv中出现的用户
                if cols[0] in programEntities.userIndex:
                    i = programEntities.userIndex[ cols[0] ]#获取user:对应的index
                    self.userMatrix[i, 0] = cleaner.getLocaleId( cols[1] )#locale
                    self.userMatrix[i, 1] = cleaner.getBirthYearInt( cols[2] )#birthyear,空值0填充
                    self.userMatrix[i, 2] = cleaner.getGenderId( cols[3] )#处理性别
                    self.userMatrix[i, 3] = cleaner.getJoinedYearMonth( cols[4] )#处理joinedAt列
                    self.userMatrix[i, 4] = cleaner.getCountryId( cols[5] )#处理location
                    self.userMatrix[i, 5] = cleaner.getTimezoneInt( cols[6] )#处理timezone
            fin.close()
            
            #归一化矩阵
            self.userMatrix = normalize(self.userMatrix, norm='l1', axis=0, copy=False)
            sio.mmwrite('US_userMatrix', self.userMatrix)
            
            #计算用户相似度矩阵,之后会用到
            self.userSimMatrix = ss.dok_matrix( (nusers, nusers) )#(3391,3391)
            for i in range(0, nusers):
                self.userSimMatrix[i, i] = 1.0
            
            for u1, u2 in programEntities.uniqueUserPairs:
                i = programEntities.userIndex[u1]
                j = programEntities.userIndex[u2]
                if (i, j) not in self.userSimMatrix:
                    #print(self.userMatrix.getrow(i).todense()) 如[[0.00028123,0.00029847,0.00043592,0.00035208,0,0.00032346]]
                    #print(self.userMatrix.getrow(j).todense()) 如[[0.00028123,0.00029742,0.00043592,0.00035208,0,-0.00032346]]
                    usim = sim(self.userMatrix.getrow(i).todense(),self.userMatrix.getrow(j).todense())
                    self.userSimMatrix[i, j] = usim
                    self.userSimMatrix[j, i] = usim
            sio.mmwrite('US_userSimMatrix', self.userSimMatrix)
    
    
    #用户社交关系挖掘
    class UserFriends:
        """
        找出某用户的那些朋友,想法非常简单
        1)如果你有更多的朋友,可能你性格外向,更容易参加各种活动
        2)如果你朋友会参加某个活动,可能你也会跟随去参加一下
        """
        def __init__(self, programEntities):
            nusers = len(programEntities.userIndex.keys())#3391
            self.numFriends = np.zeros( (nusers) )#array([0., 0., 0., ..., 0., 0., 0.]),保存每一个用户的朋友数
            self.userFriends = ss.dok_matrix( (nusers, nusers) )
            fin = gzip.open('user_friends.csv.gz')
            print( 'Header In User_friends.csv.gz:',fin.readline() )
            ln = 0
            #逐行打开user_friends.csv.gz文件
            #判断第一列的user是否在userIndex中,只有user在userIndex中才是我们关心的user
            #获取该用户的Index,和朋友数目
            #对于该用户的每一个朋友,如果朋友也在userIndex中,获取其朋友的userIndex,然后去userEventScores中获取该朋友对每个events的反应
            #score即为该朋友对所有events的平均分
            #userFriends矩阵记录了用户和朋友之间的score
            #如851286067:1750用户出现在test.csv中,该用户在User_friends.csv.gz中一共2151个朋友
            #那么其朋友占比应该是2151 / 总的朋友数sumNumFriends=3731377.0 = 2151 / 3731377 = 0.0005764627910822198
            for line in fin:
                if ln % 200 == 0:
                    print( 'Loading line:', ln )
                cols = line.decode().strip().split(',')
                user = cols[0]
                if user in programEntities.userIndex:
                    friends = cols[1].split(' ')#获得该用户的朋友列表
                    i = programEntities.userIndex[user]
                    self.numFriends[i] = len(friends)
                    for friend in friends:
                        if friend in programEntities.userIndex:
                            j = programEntities.userIndex[friend]
                            #the objective of this score is to infer the degree to
                            #and direction in which this friend will influence the
                            #user's decision, so we sum the user/event score for
                            #this user across all training events
                            eventsForUser = programEntities.userEventScores.getrow(j).todense()#获取朋友对每个events的反应:0, 1, or -1
                            #print(eventsForUser.sum(), np.shape(eventsForUser)[1] )
                            #socre即是用户朋友在13418个events上的平均分
                            score = eventsForUser.sum() / np.shape(eventsForUser)[1]#eventsForUser = 13418,
                            #print(score)
                            self.userFriends[i, j] += score
                            self.userFriends[j, i] += score
                ln += 1
            fin.close()
            #归一化数组
            sumNumFriends = self.numFriends.sum(axis=0)#每个用户的朋友数相加
            print(sumNumFriends)
            self.numFriends = self.numFriends / sumNumFriends#每个user的朋友数目比例
            sio.mmwrite('UF_numFriends', np.matrix(self.numFriends) )
            self.userFriends = normalize(self.userFriends, norm='l1', axis=0, copy=False)
            sio.mmwrite('UF_userFriends', self.userFriends)
            
    print('第1步:统计user和event相关信息...')
    pe = ProgramEntities()
    print('第1步完成...
    ')
    
    print('第2步:计算用户相似度信息,并用矩阵形式存储...')
    #Users(pe)
    print('第2步完成...
    ')
    
    print('第3步:计算用户社交关系信息,并存储...')
    UserFriends(pe)
    print('第3步完成...
    ')
    

     至此,第三步完成,哪里有不明白的请留言

     我们继续看Event Recommendation Engine Challenge分步解析第四步

  • 相关阅读:
    设计一个栈,除了pop与push方法,还支持Min方法,可返回栈元素中的最小值,push、pop、min三个方法的时间复杂度必须是O(1)
    删除单向链表中间的某个节点,假定你只能访问该节点
    找出单向链表中倒数第K个节点
    关于ssh纠错笔记
    3维图像分割显示 标签: 图像分割level set3dmatlab 2015-04-16 17:59 228人阅读 评论(0)
    EM 算法 标签: clusteringalgorithm图像分割EM算法 2015-03-24 21:26 426人阅读 评论(0)
    kmeans算法分割图像 标签: kmeans图像分割算法 2015-03-23 20:02 509人阅读 评论(0)
    随机数
    IDL 日期时间函数整理
    显示程序运行时间_matlab
  • 原文地址:https://www.cnblogs.com/always-fight/p/10491271.html
Copyright © 2020-2023  润新知