• python是如何进行内存管理的


    一、python内存管理

     这个问题需要从三个方面来说:

      1)对象的引用计数机制(四增五减

      2)垃圾回收机制(手动自动,分代回收

      3)内存池机制(大m小p

     

     1)对象的引用计数机制

      要保持追踪内存中的对象,Python使用了引用计数这一简单的技术。sys.getrefcount(a)可以查看a对象的引用计数,但是比正常计数大1,因为调用函数的时候传入a,这会让a的引用计数+1

      a)增加引用计数

      • 对象被创建:x = 3.14
      • 另外的别名被创建:y = x
      • 对象被作为参数传递给函数(新的本地引用):foobar(x)
      • 对象成为容器对象的一个元素:myList = [123, x, 'xyz']

      b)减少引用计数

      • 对象的一个别名被赋值给其他对象:x = 123
      • 对象的别名被显式销毁:del y
      • 一个本地引用离开了其作用范围。如fooc()函数结束时,func函数中的局部变量(全局变量不会)
      • 对象被从一个窗口对象中移除:myList.remove(x)
      • 窗口对象本身被销毁:del myList

      c)引用计数例子,加深理解

       id()获取对象的内存地址

       在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象

    #is用于判断两个引用所指的对象是否相同。
    a = 1
    b = 1
    
    a is b
    #True
    
    print(id(a))
    #505348560
    
    print(id(b))
    #505348560
    
    a = 'good'
    b = 'good'
    a is b
    #True
    

       让我们来看看较长的字符串:

    a = "very good morning"
    b = "very good morning"
    
    id(a)
    #57960680
    id(b)
    #57960968
    
    a is b
    #False
    

       sys.getrefcount()来获取对象的引用计数:

    import sys
    a = [1 ,2, 3]
    
    print( sys.getrefcount(a) )
    #2
    
    b = a
    print( sys.getrefcount(a) )
    #3
    

     2)垃圾回收机制

      吃太多,总会变胖,Python也是这样。当Python中的对象越来越多,它们将占据越来越大的内存。不过你不用太担心Python的体形,它会在适当的时候“减肥”,启动垃圾回收(garbage collection),将没用的对象清除

      从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了

      比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。比如下面的表

    a = [1, 2, 3]
    
    sys.getrefcount(a)
    #2
    
    del a
    

      del a后,已经没有任何引用指向之前建立的[1, 2, 3]这个表。这个对象如果继续待在内存里,就成了不健康的脂肪。当垃圾回收启动时,Python扫描到这个引用计数为0的对象,就将它所占据的内存清空

      然而,减肥是个昂贵而费力的事情。垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收

      所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动

      我们可以通过gc模块的get_threshold()方法,查看该阈值:

    import gc
    gc.get_threshold()
    
    #(700, 10, 10)

      返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。

      我们也可以手动启动垃圾回收,即使用gc.collect()

      分代回收:

       Python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。

       我们的程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率

       Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象

       如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描

       这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收

       同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描

    import gc
    gc.set_threshold(700, 10, 5)
    

     3)内存池机制

      Python中有分为大内存和小内存:(256K为界限分大小内存)

      1、大内存使用malloc进行分配

      2、小内存使用内存池进行分配

      python中的内存管理机制都有两套实现,一套是针对小对象,就是大小小于256K时,pymalloc会在内存池中申请内存空间;当大于256K时,则会直接执行系统的malloc的行为来申请内存空间 

      

  • 相关阅读:
    可变参数的实现方式
    VC 链接没有 lib 文件的 dll
    Nginx使用笔记1
    实现linux 中c 函数popen( ),pclose( ); 进程通信、匿名管道
    线程池
    vue相关
    maven学习
    ES6相关
    spring boot相关
    sql 重复、替换、截取、去空格、去小数点后的位数、日期格式转换
  • 原文地址:https://www.cnblogs.com/always-fight/p/10315383.html
Copyright © 2020-2023  润新知